неразрешимыми трудностями и что изменение и движение невозможны даже с позиции плюралистической гипотезы. Таким образом, аргументы Зенона сводились к тому, чтобы привести доводы пифагорейцев – оппонентов Парменида – к абсурду. Эту мысль высказал Платон в своем диалоге «Парменид», там, где он говорит о задаче, которую ставил перед собой Зенон, восстанавливая свою (утерянную) книгу. «Истина заключается в том, что это написано для защиты идей Парменида от тех, кто на них нападал, а также для того, чтобы показать, к каким нелепым и противоречивым результатам приводят выводы [оппонентов Парменида], если им следовать. Моя книга – это ответ тем, кто верит в множественное, она опровергает их аргументы, показывая, что гипотеза о существовании множественного, если ее изучить до мельчайших деталей, приводит к еще более нелепым результатам, чем гипотеза о существовании Единого»1. А Прокл сообщает нам, что «Зенон привел сорок аргументов в подтверждение идеи о том, что бытие – это Единое, думая, что сделает доброе дело, выступив на защиту своего учителя»2.
1. Давайте предположим вместе с пифагорейцами, что Реальность состоит из отдельных частей. Эти части могут быть либо измеримыми, либо неизмеримыми. Если допустить первое, тогда линию, к примеру, как объект, состоящий из измеримых частиц, можно будет делить до бесконечности, ибо, сколько бы мы ни делили, все равно останутся измеримые части, которые тоже можно будет делить, и т. д. Но в этом случае мы можем утверждать, что линия состоит из бесконечного числа частей, обладающих размером. Тогда эта линия должна быть бесконечно большой, ибо она состоит из бесконечного числа тел. Отсюда все в мире должно быть бесконечно большим, и a fortiori[11] мир сам по себе должен быть бесконечно большим. Предположим, с другой стороны, что части не имеют размера. В этом случае вся Вселенная будет бесконечно малой, ибо, сколько бы мы ни добавляли частей, если они не имеют размеров, то и сумма их не будет иметь размеров. Но если Вселенная не имеет размера, значит, она бесконечно мала и все в ней будет бесконечно малым.
Пифагорейцы, таким образом, стоят перед дилеммой. Либо все во Вселенной бесконечно велико, либо бесконечно мало. Вывод, к которому хочет подвести нас Зенон, заключается в том, что предположение, которое породило подобную дилемму, а именно что Вселенная и все в ней состоит из частей, – абсурдно. Если пифагорейцы думают, что гипотеза Единого абсурдна и ведет к нелепым выводам, то Зенон показывает, что противоположная гипотеза, гипотеза множества, приводит к столь же нелепым выводам.
2. Если существует множество, тогда мы должны суметь его подсчитать. По крайней мере, количество объектов должно быть исчислимо, ибо, если оно неисчислимо, как оно может существовать? С другой стороны, объекты могут быть и неисчислимыми, но число их должно быть бесконечно. Почему? Потому что между любыми двумя частями всегда будут другие части, подобно тому как линия может делиться до бесконечности. Однако утверждать, что множество конечно и одновременно бесконечно, – это полный абсурд.
3. Слышим ли мы шум, когда падает мешок с зерном? Конечно. А когда падает одно зернышко или тысячная его часть? Мы ничего не слышим. Но мешок наполнен зернами или их кусочками. Тогда, если части падают бесшумно, как может целое при падении издавать шум, если оно состоит из частей? 3
Парменид отрицал существование пустоты или пространства, и Зенон попытался подкрепить позицию учителя, доведя аргументы противоположной стороны до абсурда. Предположим на мгновение, что существует пространство, в котором находятся различные объекты. Если это пустота, ничто, то в нем не может быть никаких объектов. Если же это что–то материальное, то оно само должно располагаться в пространстве, а
К самым известным относятся апории Зенона, касающиеся движения. Следует помнить, что Зенон пытается доказать нам следующее: движение, существование которого отрицал Парменид, одинаково невозможно и с точки зрения пифагорейской теории множественного.
1. Предположим, вы хотите пересечь стадион или беговую дорожку. Чтобы сделать это, вам надо будет пройти бесконечное число точек – согласно гипотезе пифагорейцев. Более того, если вы вообще хотите достичь противоположного конца стадиона, вам нужно будет сделать это за конечный отрезок времени. Но как вы сможете пройти бесконечное число точек, иными словами, преодолеть бесконечную дистанцию за конечный отрезок времени? Приходится сделать вывод, что вы
2. Предположим, что Ахилл и черепаха состязаются в беге. Поскольку Ахилл спортсмен, он пускает черепаху вперед. К тому времени, когда он достигает того места, с которого стартовала черепаха, та уже передвинулась в другую точку, а когда Ахилл достигает
3. Представим себе летящую стрелу. По теории пифагорейцев, стрела должна занимать определенное положение в пространстве. Но занимать определенное положение в пространстве означает оставаться в покое. Отсюда, летящая стрела стоит на месте, а это абсурд.
4. Четвертый довод Зенона, о котором нам сообщает Аристотель, по словам сэра Дэвида Росса, «очень трудно понять, частично из–за того, что Аристотель неясно его излагает, и частично из–за того, что написанное можно трактовать по–разному». Представим себе три группы спортсменов, находящихся на стадионе или на беговой дорожке. Одна группа неподвижна, две другие движутся навстречу друг другу с равной скоростью.
Чтобы занять это положение, первые спортсмены группы В пробежали мимо четырех спортсменов из группы А, в то время как первые спортсмены группы С прошли мимо всех спортсменов группы В. Если требуется одна единица времени, чтобы пройти одну единицу длины, тогда, чтобы достичь положения на рис. 2, первым спортсменам из группы В потребуется времени ровно вполовину меньше, чем первым спортсменам из группы С. С другой стороны, первые спортсмены из группы В прошли мимо всех спортсменов из группы С, так же как и первые спортсмены из этой группы миновали всех спортсменов из группы В. Значит, они должны были сделать это за
Как же следует толковать эти аргументы Зенона? Не следует думать, что это просто софистика или интеллектуальные трюки, основанные на ошибочном предположении, что линия состоит из точек, а время – из отдельных мгновений. Возможно, головоломки можно решить, показав, что линия и время непрерывны, а не дискретны, однако Зенон вовсе не считал их непрерывными. Наоборот, он стремился доказать абсурдность выводов, которые следуют из предположения, что линия и время – дискретны. Зенон, как ученик Парменида, верил, что движение – это иллюзия, что оно невозможно. Цель его аргументов заключалась в том, чтобы доказать, что даже с точки зрения гипотезы множественности движение также невозможно и что предположение о его возможности ведет к противоречивым и абсурдным выводам. Позиция Зенона заключалась в следующем: «Реальность – это заполненность, сплошная масса, и движение в ней невозможно. Наши оппоненты признают существование движения и пытаются объяснить