Таким образом, в этой тривиальной форме вопрос о полноте неинтересен. Но имеется и более полезное понятие полноты, соответствующее значению этого слова в математической логике. Для математика некоторая теория является полной, если ее аксиомы и правила вывода являются достаточно мощными, чтобы доказать истинность или ложность любой формулы, выразимой в языке данной теории. Хотя такое понятие полноты является более ограниченным, но оно интеллектуально вполне удовлетворительно, поскольку показывает, что если теория позволяет нам выражать некоторое свойство, то она также дает возможность определить имеет ли это свойство место.
Как можно перенести эту идею на спецификации АТД? Здесь 'язык теории' - это множество правильно построенных выражений, т.е. тех выражений, которые можно построить, используя функции АТД, применяемые к аргументам соответствующих типов. Например, используя спецификацию АТД
new
put (new, x)
item (new) - если это кажется странным, то см. комментарии ниже.
empty (put (new, x))
stackexp - ранее определенное сложное выражение.
Однако выражения
Третий пример в рамке
Определение: корректное выражение АТД
Пусть f(x1 , ... , xn) - правильно построенное выражение, содержащее одну или более функций некоторого АТД. Это выражение является корректным тогда и только тогда, когда все его аргументы xi являются (по рекурсии) корректными и их значения удовлетворяют предусловию f, если оно имеется.
Не следует путать 'корректное' и 'правильно построенное'. 'Правильно построенное' - это структурное свойство, указывающее на то, что функции, входящие в выражение, имеют правильное число аргументов соответствующих типов, а корректность, которой могут обладать лишь правильно построенные выражения, означает, что данное выражение задает осмысленное вычисление. Как мы видели, выражение
Правильно построенное, но некорректное выражение похоже на программу, которая компилируется (поскольку построена в соответствии с требованиями синтаксиса языка программирования и удовлетворяет ограничениям, накладываемым в нем на типы), но аварийно завершается во время выполнения из-за выполнения некоторой недопустимой операции, например, деления на 0 или выталкивания элемента из пустого стека.
Особый интерес с точки зрения полноты представляют выражения-запросы, у которых самая внешняя функция является запросом. Вот примеры таких выражений:
empty (put (put (new, x1), x2))
item (put (put (new, x1), x2))
stackexp
Выражение-запрос задает значение, которое (если оно определено) принадлежит не определяемому АТД, а некоторому другому ранее определенному типу. Так, первое приведенное выше выражение имеет значение типа
Выражения-запросы представляют внешние наблюдения, которые можно сделать о результатах некоторого вычисления, использующего экземпляры нового АТД. Если спецификация этого АТД хорошая, то она должна позволить нам установить определены ли эти результаты, и если да, то каковы они. Представляется, что спецификация стека обладает этим свойством, по крайней мере, для трех представленных в примере выражений, поскольку она позволяет установить, что все эти выражения определены, и с помощью аксиом можно получить их значения:
empty (put (put (new, x1), x2)) = False
item (put (put (new, x1), x2)) = x2
stackexp = x4
Эти наблюдения, перенесенные на произвольные спецификации АТД, приводят к прагматическому понятию полноты, известному как достаточная полнота, она означает, что спецификация содержит достаточно сильные аксиомы, которые позволяют находить для любого выражения-запроса его результат в виде некоторого простого значения.
Приведем точное определение достаточной полноты. (Не расположенные к математике читатели могут пропустить остаток этого раздела).
Определение: достаточная полнота
Спецификация АТД T является достаточно полной тогда и только тогда, когда аксиомы ее теории позволяют для каждого выражения expr решить следующие задачи:
[x]. (S1) Определить, является ли
[x]. (S2) Если
В S2 выражение expr имеет вид
Достаточная полнота свидетельствует о том, что никакое важное свойство не осталось вне нашей спецификации. Поэтому ее можно считать ответом на поставленный выше вопрос: как понять, что можно прекратить поиски новых свойств при построении спецификации? На практике хорошо бы проводить такую проверку, по крайней мере неформально, для любой спецификации АТД, которую вы пишете - начните с решений упражнений, приведенных в этой лекции. Часто, можно получить формальное доказательство достаточной полноты; приведенное ниже доказательство для спецификации
Пункт S2 оптимистически говорит об одном значении
Определение: непротиворечивость АТД
Спецификация АТД является непротиворечивой тогда и только тогда, когда для всякого правильно построенного выражения expr ее аксиомы позволяют вывести не более одного
