значения.
Эти два свойства являются взаимно дополнительными. Нам хотелось бы для каждого выражения- запроса выводить ровно одно значение: хотя бы одно (достаточная полнота), но не более одного (непротиворечивость).
Доказательство достаточной полноты
(Этот раздел и остаток этой лекции содержат дополнительный материал и их результаты не нужны для остальной части книги).
Достаточная полнота спецификаций АТД является, в общем случае, алгоритмически неразрешимой проблемой. Иными словами, не существует общего метода доказательства, который мог бы по заданной спецификации АТД выяснить за конечное время ее достаточную полноту. Непротиворечивость также в общем случае неразрешима.
Несмотря на это, часто удается доказать достаточную полноту и непротиворечивость конкретной спецификации АТД. Чтобы удовлетворить любопытство читателей-любителей математики, в заключение этой лекции мы приведем доказательство того, что спецификация
Для доказательства достаточной полноты спецификации стека нужно придумать эффективное правило для решения указанных выше задач S1 и S2, другими словами, такое правило, которое позволит нам для любого стекового выражения
[x]. (S1) Определить, является ли e корректным.
[x]. (S2) Если в пункте S1 установлена корректность e и его внешними функциями являются
Для начала мы рассмотрим только правильно построенные выражения, не включающие ни одну из двух функций-запросов
Правило для решения задачи S1 задается следующим свойством:
Правило корректного веса
Правильно построенное стековое выражение e, не содержащее ни item, ни empty, является корректным тогда и только тогда, когда его вес неотрицателен и каждое его подвыражение является (по индукции) корректным.
Здесь 'вес' выражения представляет число элементов в соответствующем стеке, это значение также совпадает с разностью между числом вложенных вхождений функций
Определение: вес
Вес правильно построенного стекового выражения, не содержащего ни item, ни empty, определяется по индукции следующим образом:
[x]. (W1) Вес выражения
[x]. (W2) Вес выражения
[x]. (W3) Вес выражения
Содержательно, правило корректного веса утверждает, что стековое выражение корректно тогда и только тогда, когда в нем самом и в каждом из его подвыражений имеется не меньше операций
Интуитивно сформулированное правило выглядит верным, но нам следует все же доказать, что оно имеет место. Удобно ввести еще одно вспомогательное правило и одновременно доказывать справедливость обоих этих правил:
Правило нулевого веса
Пусть e - это правильно построенное и корректное стековое выражение, не содержащее item или empty. Тогда empty (e) истинно тогда и только тогда, когда вес e равен 0.
Доказательство использует индукцию по уровню вложенности (максимальному числу вложенных пар скобок) выражения. Для удобства ссылок напомним аксиомы, относящиеся к функции
Аксиомы стека
Для всех x: G, s: STACK [G]
[x]. (A3) empty (new)
[x]. (A4) not empty (put (s, x))
При уровне вложенности 0 (без скобок) выражение e должно совпадать с
Индукционный шаг: предположим, что оба правила выполняются для всех выражений с уровнем вложенности не более
E1 · e = put (s, x)
E2 · e = remove (s)
где
В случае E1, поскольку
В случае E2 выражение
EB1 _ s и все его подвыражения являются корректными.
EB2 _ not empty (s) (это предусловие для функции remove).
