выражениями через соответствующие орты
Точно такое же уравнение Максвелла в дифференциальной форме выводит Э. Парселл во II томе «Берклеевского курса физики» [10], исходя из его интегральной формы
Он показывает, что уравнение (12) является следствием этого последнего уравнения. Но логика следующего далее утверждения того же Э. Парселла совершенно парадоксальна, он пишет буквально следующее:
«Так как B может зависеть от положения и от времени, то мы напишем ?B/?t вместо dB/dt». Никаких иных пояснений или доказательств к этому неожиданному заявлению не дается. Да их и не может быть! Зная зависимость
В других курсах релятивистской физики такой прием лучше замаскирован. Приведем лишь некоторые наиболее известные и распространенные источники.
Р. Фейнман в своих «Фейнмановских лекциях по физике» рассматривает формулы электромагнитного поля с частными производными по времени, называя их не уравнениями Максвелла-Герца, как Эйнштейн, а уравнениями Максвелла, хотя, как было показано выше, Максвелл, следуя Фарадею, использовал в них полные производные. Р. Фейнман пишет [11]: «Однако уравнения Максвелла, по-видимому, не подчиняются принципу относительности: если их преобразовать подстановкой (Галилея —
В курсе физики С. Э. Фриша и А. В. Тиморевой [12], в справочнике по физике для студентов Н. И. Карякина… [13] и многих других монографиях уравнения Максвелла приводятся в частных производных по времени без всяких обоснований.
На странице 46 своего курса физики С. Э. Фриш и А. Д. Тиморева [12] дают краткий вывод уравнения Фарадея
из которого позднее получаются уравнения Максвелла. Однако при выводе этого равенства авторы забыли, что в общем виде как напряженность
Такие же двучленные выражения должны быть написаны и для каждого из прочих координатных направлений. Только после этого их система будет оправдана всеми экспериментами Фарадея и на их основе можно будет построить современную, а не воображаемую, электродинамику. При этом именно члены типа ?u / ?t обеспечат ей возможность охвата как статических, так и быстротекущих явлений.
Но авторы этого учебника членами ?u / dt пренебрегают, что лишает их выводы необходимой общности. Позднее, на стр. 462–466, с вводом новой переменной D возвращается связь электромагнитного поля со временем, но одновременно теряется связь правых частей уравнений Максвелла (и Фарадея) с пространственными координатами. А в них то и заключается самая сущность вопроса.
Понятно, что искаженные таким образом уравнения не могут дать правильных результатов.
Для дальнейшего исследования мы возвратимся к исходному уравнению Максвелла в его общей форме (12).
Развернем величину полной производной по частным ее слагающим
Производные от координат по времени, согласно условиям принятым в предыдущем разделе, равны слагающим скорости движения света. Следовательно, равенство (12) равносильно следующему:
Такое же уравнение мы можем написать для любой другой (штрихованной) системы координат, движущейся относительно первой в любом направлении со скоростью
Оба уравнения (14) и (15) относятся к одному и тому же явлению в одном и том же единственном пространстве. Следовательно, они должны быть совместны. Свяжем их в соответствии c правилами аналитической геометрии преобразованиями Галилея по всем координатам:
После дифференцирования равенства (16) имеем:
Подставляя эти соотношения в уравнение (15), получим:
Мы получили уравнение, тождественное по своему смыслу с уравнением (14), и отличающееся от него только тем, что здесь вместо скорости света «
Уравнение (14) является частным случаем уравнения (18) для условия