(18), полностью отвечающее преобразованию Галилея с учетом направленности воздействия и механики Ньютона.

Разрыв между электродинамикой неподвижных и быстродвижущихся тел, таким образом, устраняется.

Совершенно так же может быть преобразована и вторая группа уравнений Максвелла, приводящая к следующей векторной форме:

Из него мы получаем в системе Oxyz аналогичным образом, как и для соотношения (14):

и соответственно в системе O/x/y/z/:

К этим уравнениям может быть отнесено все то, что мы сказали об уравнениях (14) и (18).

Таким образом, вся группа уравнений Максвелла оказывается ковариантной к преобразованиям Галилея и ей должен быть возвращен весь тот авторитет, которым она пользовалась до начала XX века включительно. Она точно вписывается в общую систему человеческих знаний о природе и, в отличие от теории Эйнштейна, не требует никакой ломки основных физических представлений, сложившихся в течение тысячелетий, и стройного здания математики, созданного величайшими гениями человечества. Исчезают все парадоксы, порожденные вторым постулатом Эйнштейна, и отпадает всякая необходимость в многомерных геометриях Римана и преобразованиях Лоренца.

Словом, по выражению академика Мандельштама, тогда «вес приходит в порядок»!

Та форма с частными производными, которую, вопреки здравому смыслу и опыту, придали этим уравнениям Герц и Хевисайд на заре XX века, свою задачу выполнила: уравнения Максвелла превратились в выражения, нековариантные относительно преобразования Галилея, что открыло путь к распространению релятивизма.

Как отмечено в [14], в трудах Эйнштейна почти нет ссылок на чьи-либо высказывания, цитаты единомышленников или предшественников. Следовательно, все погрешности, которые могут быть в них обнаружены, должны относиться на счет самого автора. Поэтому и та фундаментальная ошибка, о которой мы говорим, — использование уравнений Максвелла с подменой полной производной на частную, — может быть названа ошибкой Эйнштейна. Хотя первыми, кто ее допустил, как мы указали выше, были Г. Герц [15] и О. Хевисайд [16].

Механизм появления этой ошибки с большой степенью вероятности можно восстановить, продолжив ход рассуждений С. Э. Фриша и А. В. Тиморевой ([12], с. 466).

В основу здесь положено уравнение электромагнитной индукции Фарадея, которое указывает на прямую пропорциональность силы индуцированного тока величине производной от магнитного потока. Эта же последняя, в свою очередь, является суммой частных производных от рассматриваемого параметра по трем координатам и времени:

Из них классическая физика сохраняла все четыре, а физика Эйнштейна первые три выбрасывает и оставляет только последнюю.

Выше мы убедились, к чему приводят результаты такого произвольного «преобразования».

Таким образом, мы вернулись к уравнениям типа (13) и всем прежним выводам из них, которые остаются в силе.

К таким же выводам можно придти, сравнив математическую корректность уравнений Галилея и уравнений Лоренца. Первые вытекают непосредственно из определения декартовых координат и элементарной геометрии Евклида. Они не подлежат никакому сомнению. Для перехода же к группе Лоренца нам потребовалось бы ввести во все правые (и только правые) части уравнений Галилея произвольный множитель

где 

зависит от относительной скорости тела и источника света vi и от направления их движения, i = 1, 2, 3. Этот множитель сохраняет свое вещественное значение только в пределах

На границе значения

он обращается в бесконечность, а при

становится мнимым. Соответствующая величина перестает существовать, а скорости, большие скорости света, вытесняются в небытие.

Так создается видимость математического обоснования теории относительности Эйнштейна и вводится в заблуждение мировая общественность и научные учреждения. Хотя недопустимость подобной операции хорошо известна любому школьнику средних классов!

Герц и Хевисайд могли ограничиться в правой части уравнений Максвелла только частными производными по времени потому, что имели дело с практически неограниченными, однородными пространствами, свободными от неравномерно распределенных и движущихся парамагнитных тел. При этом частные производные по координатам были достаточно малы, а малость скоростей движения зарядов также уменьшала их влияние. Такие уравнения могут применяться в стационарных трансформаторах и других установках, не имеющих движущихся намагниченных частей.

Чаще в технике применяются устройства, в которых можно скорее пренебречь частными производными по времени, чем по координатам, когда магнитное поле в целом остается стационарным, но связано с магнитными элементами сложной формы, вдоль которых движутся проводники, несущие ток. В таком случае в уравнениях Максвелла должны быть сохранены полные производные от магнитной индукции и электрической напряженности поля. Практически это и соблюдается во всех промышленных расчетах по технике сильного тока.

Однако пользование формулами Максвелла в их натуральном виде довольно сложно. Значительное упрощение может быть достигнуто только в стационарных условиях, когда в формуле (14) частную производную по времени от магнитной индукции можно приравнять к нулю. При этом следует выбрать такую систему координат, в которой ось Oz совпадает с направлением силовых линий поля, а вектор относительного движения зарядов лежит в плоскости OXY. Тогда получим: сх = с, су = сz = 0,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату