нескольких полезных признаков. Такое скрещивание при последующем строгом отборе приводит к улучшению свойств породы.

При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении гибридов повышается жизнеспособность и наблюдается мощное развитие. Это явление получило название гибридной силы, или гетерозиса. Оно объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов. При последующих скрещиваниях гибридов между собой гетерозис затухает вследствие выщепления гомозигот.

Одно из выдающихся достижений современной селекции – разработка способов преодоления бесплодия межвидовых гибридов. Впервые это удалось осуществить в начале 20-х годов советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки.

Академику Н. В. Цицину удалось создать гибрид пшеницы с пыреем. На основе этого гибрида был выведен новый сорт зерно-кормовой пшеницы, который дает за три укоса в сезон до 300–450 ц/га зеленой массы. Методами отдаленной гибридизации получена новая зерновая и кормовая культура – гибрид пшеницы с рожью. Этот гибрид, названный тритикале, удачно сочетает ценные признаки пшеницы и ржи, давая высокие урожаи зерна и зеленой массы с высокими питательными качествами. Н. В. Цицину удалось получить этим способом и ряд кормовых культур.

Вопрос 2. Круговорот веществ в экосистеме. Основной источник энергии, обеспечивающий круговорот веществ

Существование биомассы связано с поступлением энергии и веществ из окружающей неорганической среды. Большинство веществ земной коры проходит через живые организмы и вовлечено в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза.

Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (CO2 и Н2О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей. Образованные в процессе фотосинтеза органические вещества могут служить источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим: от растений к растительноядным животным, от них – к плотоядным и т. д. Высвобождение заключенной в органических соединениях энергии происходит в процессе дыхания или брожения. В конечном итоге вся поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения. Поэтому биосфере необходим приток энергии извне.

Различают круговороты газового типа с резервуарами неорганических соединений в атмосфере или океанах (N2, О2, СО2, Н2О), и круговороты осадочного типа с менее обширными резервуарами в земной коре (Р, Са, Fе).

Круговорот азота связан с его превращением в нитраты за счет деятельности азотфиксирующих и нитрифицирующих бактерий. Нитраты усваиваются растениями из почвы или воды. В конце концов редуценты вновь переводят азот в газообразную форму и возвращают его в атмосферу.

Углерод, содержащийся в атмосфере в виде СО2, является одним из исходных компонентов для фотосинтеза, а затем вместе с органическим веществом потребляется консументами. При дыхании растений и животных, а также за счет редуцентов углерод в виде СО2 возвращается в атмосферу.

В отличие от азота и углерода резервуар фосфора находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами. Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.

От того, насколько регулярно осуществляется круговорот того или иного биогенного элемента, зависит продуктивность биогеоценоза, что имеет большое значение для сельскохозяйственного производства и лесного хозяйства. Сбалансированность биологического круговорота, т. е. его уравновешенность, а, следовательно, и устойчивость экосистемы определяются максимально возможным числом связей между видами в пищевой сети.

Вопрос 3. Решить задачу на определение аминокислот в молекуле белка с использованием таблицы генетического кода

Задача.

Фрагмент левой цепи ДНК имеет следующую структуру:

ТГТ-ТАТ-ЦАЦ-ЦГА-АГГ-ЦТТ-АЦА.

Какова первичная структура фрагмента белка, если он синтезируется согласно генетической информации на фрагменте правой цепи ДНК.

Решение.

1. Построим по принципу комплементарности правую цепь ДНК:

2. Используя принцип комплементарности, построим иРНК, кодирующую биосинтез данного фрагмента белка, по правой цепи ДНК:

УГУ-УАУ-ЦАЦ-ЦГА-АГГ-ЦУУ-АЦА иРНК

3. С помощью таблицы генетического кода определим последовательность включения аминокислот в белковую цепь:

вал-изолей-тре-арг-гли-фен-цис.

Ответ: первичная структура фрагмента молекулы белка, синтезированной согласно генетической информации на правой цепи ДНК, вал-изолей-тре-арг-гли-фен-цис.

Билет № 25

Вопрос 1. Гетерозис, полиплоидия, мутагенез, их использование в селекции

Основными методами селекции являются отбор и гибридизация. Однако методом отбора нельзя получить организмы с новыми признаками и свойствами. Для создания новых форм и получения оптимальных сочетаний признаков в селекции используют гибридизацию и сопутствующее ей явление – гетерозис. Было замечено, что гибриды первого поколения обладают повышенной жизнеспособностью и продуктивностью по сравнению с обеими родительскими формами. Кроме того, при создании новых сортов растений широко используются полиплоидия (умножение числа наборов хромосом) и индуцированный мутагенез. Применение этих методов в селекции растений и микроорганизмов дает больше положительных результатов, чем в селекции животных. Рассмотрим их использование в селекции.

Несмотря на некоторые недостатки самоопыления, его часто применяют в селекции у перекрестноопыляемых растений. В первую очередь выводят гомозиготные линии с устойчивыми желательными признаками. Затем проводят перекрестное опыление между разными самоопыляющимися линиями. При этом в ряде случаев появляются высокоурожайные гибриды. Этот прием называется межлинейной гибридизацией, при использовании которого проявляется эффект гетерозиса, или гибридной силы. В этом случае первое гибридное поколение обладает высокой урожайностью и жизнеспособностью. Во втором поколении эффект гетерозиса, как правило, снижается. Генетические основы гетерозиса еще недостаточно изучены, но, нет сомнений, что положительный эффект обусловлен высокой гетерозиготностью гибридов, связанной с проявлением повышенной физиологической активности. Гетерозис так же успешно применяется в животноводстве и птицеводстве.

Наследственные изменения (мутации) свойственны всем организмам. Происходят они в хромосомах под влиянием внешней или внутренней среды. Мутации затрагивают строение и функции организма. Известны как резкие наследственные отклонения, так и небольшие мутационные изменения,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату