Электронное нейтрино <10-8 Мюонное нейтрино <0,0003 Тау-нейтрино <0,033
Адроны
u-кварк 0,0047 с-кварк 1,6 t-кварк 189,0
d-кварк 0,0074 s-кварк 0,16 b-кварк 5,2

Рис. 6.11. Таблица трех семейств элементарных частиц, показывающая два поколения лептонов и адронов (кварков) в каждом случае. Массы измеряются в единицах массы протона.

Как мы видим на иллюстрации (рис. 6.11), шесть кварков, которые составляют адроны, также распадаются на три семейства с двумя поколениями в каждом. Как и для лептонов, мы можем различать семейства по их массам. Кварковыми двойниками электрона и его нейтрино являются верхний кварк (u-кварк, от англ. up) и нижний кварк (d-кварк, от англ. down), весящие в 8,7 и 13,7 раза больше электрона соответственно. Кварковыми двойниками мюона и его нейтрино являются очарованный кварк (c-кварк, от англ. charm) и странный кварк (s-кварк, от англ. strange), весящие 3000 и 300 масс электрона соответственно. Двойниками тау-лептона и его нейтрино являются истинный кварк (t-кварк, от англ. truth) (был обнаружен последним из всех, в 1995) и красивый кварк (b-кварк, от англ. beauty), весящие как слоны, 350 тысяч и 10 тысяч масс электрона соответственно. Об этих различных вариациях кварков — верхний, нижний, странный и так далее — говорят, так же как о различных нейтрино, как об имеющих различные ароматы. Большая часть знакомого нам вещества (в частности, протоны и нейтроны в ядрах и электроны в атомах) сделаны из лептонов и кварков первого семейства (электрон, его нейтрино, — u- и d-кварки), а другие семейства вносят вклад только в более экзотические формы вещества. Откровенно говоря, существование второго и третьего семейств кажется излишним, но, без сомнения, для этого имеется причина, поскольку причина имеется для всего. Не лежит ли причина в симметрии? Мы увидим, что ответ, возможно, является утвердительным, если понятие симметрии соответствующим образом расширить.

Ни один из кварков никогда не наблюдался отдельно. Это подводит меня к необходимости сделать одно замечание, чтобы подготовить ваш ум к оценке еще одной подвижки научной парадигмы, которая произойдет к концу этой главы. Греки по большей части терпели неудачи как ученые, поскольку они избегали экспериментирования или не пользовались им: у них была только теория, не контролируемая и не поддерживаемая опытом. Тот факт, что кварки не были непосредственно зарегистрированы, а в их существование верят, поскольку этого требует успешная на сегодняшний день теория, и их существование подтверждается огромным количеством косвенных экспериментов, является, возможно, опасным шагом назад к грекам и, без сомнения, угнетает позитивистов. В этом месте теория построена довольно умно, и нисколько не оказывается подорванной, потому что она сама и предсказывает, что изолированные кварки не могут быть обнаружены, ибо, как было упомянуто, сильное взаимодействие между кварками возрастает с ростом расстояния между ними, так что они никогда не могут покинуть образованные ими комбинации. Поэтому то, что они не обнаружены, является частью доказательства их существования! Так поверить ли нам в кварки или отвергнуть их, как когда-то были отвергнуты атомы, сочтенные лишь вычислительными символами? Они объясняют так много, включая и экспериментальные следствия их существования, что мы, вероятно, поверим. Если вас удовлетворяет такой вид веры, такой вид реальности, то вы сочтете возможным принять и то, что последует дальше.

Вот и все, что относится к делу: три семейства фермионов с похожими свойствами, за исключением их спинов и различия их способностей вступать в различные взаимодействия, особенно в сильные взаимодействия. Все существующее, насколько мы знаем, построено из этих компонент, связанных вместе, как они есть, четырьмя типами калибровочных бозонов. Мир в сущности необычайно прост.

А вот наше описание мира недостаточно просто. Пусть и очень маленькое, но это число частиц — четыре фермиона (если мы сосредоточимся на первом семействе) и несколько калибровочных бозонов — все еще является огромным, если мы ищем истинную простоту. Мы уже отмечали, что W- и Z-бозоны в слабом взаимодействии и фотоны в электромагнитном взаимодействии являются различными ликами частиц-переносчиков электрослабого взаимодействия. А не может ли быть, что все фермионы есть различные лики одной и той же сущности, и все бозоны тоже? Не может ли быть, в конце концов, что фермионы и удерживающие их вместе бозоны в действительности являются различными ликами единственной сущности? Вот это было бы тем самым, тем, что приближает нас к истинной простоте.

Похоже, что дело именно так и обстоит. Однако, чтобы понять, что это означает, нам придется вернуться к теме этой главы, симметрии, и увидеть, как симметрия создает возможности для углубленного понимания того, что кажется нам предельным. Чтобы наглядно вообразить, как симметрия может связывать не связанные с виду вещи, вы можете представить себе куб. Если смотреть сверху, он выглядит квадратом. Если смотреть со стороны угла (и закрыть один глаз), он выглядит как шестиугольник (рис. 6.12). Вращение куба превращает квадрат в шестиугольник. Это очень странное превращение для двумерного наблюдателя, но оно является самой простотой для нас, имеющих доступ к третьему измерению. Полезно держать в голове этот образ, когда мы говорим о преобразованиях симметрии, которые связывают не связанные с виду вещи.

Рис. 6.12. Держите в уме эту аналогию, читая оставшуюся часть главы: она показывает две, с виду не связанные, двумерные формы (квадрат и шестиугольник), которые можно рассматривать как разные виды одного объекта более высокой размерности, куба.

Природа имеет замечательное свойство, называемое калибровочной симметрией. Это унылое, беспомощное и нелепое наименование сложилось исторически еще

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×