Электронное нейтрино | <10-8 | Мюонное нейтрино | <0,0003 | Тау-нейтрино | <0,033 |
0,0047 | 1,6 | 189,0 | |||
0,0074 | 0,16 | 5,2 |
Рис. 6.11. Таблица трех семейств элементарных частиц, показывающая два поколения лептонов и адронов (кварков) в каждом случае. Массы измеряются в единицах массы протона.
Как мы видим на иллюстрации (рис. 6.11), шесть кварков, которые составляют адроны, также распадаются на три семейства с двумя поколениями в каждом. Как и для лептонов, мы можем различать семейства по их массам. Кварковыми двойниками электрона и его нейтрино являются верхний кварк (
Ни один из кварков никогда не наблюдался отдельно. Это подводит меня к необходимости сделать одно замечание, чтобы подготовить ваш ум к оценке еще одной подвижки научной парадигмы, которая произойдет к концу этой главы. Греки по большей части терпели неудачи как ученые, поскольку они избегали экспериментирования или не пользовались им: у них была только теория, не контролируемая и не поддерживаемая опытом. Тот факт, что кварки не были непосредственно зарегистрированы, а в их существование верят, поскольку этого требует успешная на сегодняшний день теория, и их существование подтверждается огромным количеством
Вот и все, что относится к делу: три семейства фермионов с похожими свойствами, за исключением их спинов и различия их способностей вступать в различные взаимодействия, особенно в сильные взаимодействия. Все существующее, насколько мы знаем, построено из этих компонент, связанных вместе, как они есть, четырьмя типами калибровочных бозонов. Мир в сущности необычайно прост.
А вот наше описание мира недостаточно просто. Пусть и очень маленькое, но это число частиц — четыре фермиона (если мы сосредоточимся на первом семействе) и несколько калибровочных бозонов — все еще является огромным, если мы ищем истинную простоту. Мы уже отмечали, что W- и Z-бозоны в слабом взаимодействии и фотоны в электромагнитном взаимодействии являются различными ликами частиц-переносчиков электрослабого взаимодействия. А не может ли быть, что все фермионы есть различные лики одной и той же сущности, и все бозоны тоже? Не может ли быть, в конце концов, что фермионы и удерживающие их вместе бозоны в действительности являются различными ликами
Похоже, что дело именно так и обстоит. Однако, чтобы понять, что это означает, нам придется вернуться к теме этой главы, симметрии, и увидеть, как симметрия создает возможности для углубленного понимания того, что кажется нам предельным. Чтобы наглядно вообразить, как симметрия может связывать не связанные с виду вещи, вы можете представить себе куб. Если смотреть сверху, он выглядит квадратом. Если смотреть со стороны угла (и закрыть один глаз), он выглядит как шестиугольник (рис. 6.12). Вращение куба превращает квадрат в шестиугольник. Это очень странное превращение для двумерного наблюдателя, но оно является самой простотой для нас, имеющих доступ к третьему измерению. Полезно держать в голове этот образ, когда мы говорим о преобразованиях симметрии, которые связывают не связанные с виду вещи.
Рис. 6.12. Держите в уме эту аналогию, читая оставшуюся часть главы: она показывает две, с виду не связанные, двумерные формы (квадрат и шестиугольник), которые можно рассматривать как разные виды одного объекта более высокой размерности, куба.
Природа имеет замечательное свойство, называемое