THERE IS A widespread fear among scholars in the humanities and arts that science may someday take over their discipline and deprive them of employment, a syndrome I have dubbed “neuron envy.” Nothing could be further from the truth. Our appreciation of Shakespeare is not diminished by the existence of a universal grammar or Chomskian deep structure underlying all languages. Nor should the diamond you are about to give your lover lose its radiance or romance if you tell her that it is made of carbon and was forged in the bowels of Earth when the solar system was born. In fact, the diamond’s appeal should be enhanced! Similarly, our conviction that great art can be divinely inspired and may have spiritual significance, or that it transcends not only realism but reality itself, should not stop us from looking for those elemental forces in the brain that govern our aesthetic impulses.
CHAPTER 8
The Artful Brain: Universal Laws
—RICHARD WAGNER
BEFORE MOVING ON TO THE NEXT SEVEN LAWS, I WANT TO CLARIFY what I mean by “universal.” To say that the wiring in your visual centers embodies universal laws does not negate the critical role of culture and experience in shaping your brain and mind. Many cognitive faculties that are fundamental to your human way of life are only partly specified by your genes. Nature and nurture interact. Genes wire up your brain’s emotional and cortical circuits to a certain extent and then leave it to faith that the environment will shape your brain the rest of the way, producing you, the individual. In this respect the human brain is absolutely unique—as symbiotic with culture as a hermit crab is with its shell. While the laws are hardwired, the content is learned.
Consider face recognition. While your ability to learn faces is innate, you are not born knowing your mother’s face or the mail carrier’s face. Your specialized face cells learn to recognize faces through exposure to the people you encounter.
Once face knowledge is acquired, the circuitry may spontaneously respond more effectively to caricatures or Cubist portraits Once your brain learns about other classes of objects or shapes—bodies, animals, automobiles, and such—your innate circuitry may spontaneously display the peak-shift principle or respond to bizarre ultranormal stimuli analogous to the stick with stripes. Because this ability emerges in all human brains that develop normally, we are safe in calling it universal.
Contrast
It is hard to imagine a painting or sketch without contrast. Even the simplest doodle requires contrasting brightness between the black line and white background. White paint on a white canvas could hardly be called art (although in the 1990s the purchase of an all-white painting figured in Yasmina Reza’s hilarious award-winning play
In scientific parlance, contrast is a relatively sudden change in luminance, color, or some other property between two spatially contiguous homogeneous regions. We can speak of luminance contrast, color contrast, texture contrast, or even depth contrast. The bigger the difference between the two regions, the higher the contrast.
Contrast is important in art or design; in a sense it’s a minimum requirement. It creates edges and boundaries as well as figures against background. With zero contrast you see nothing at all. Too little contrast and a design can be bland. And too much contrast can be confusing.
Some contrast combinations are more pleasing to the eye than others. For example, high-contrast colors such as a blue splotch on a yellow background are more attention grabbing than low-contrast pairings like a yellow splotch on an orange background. It’s puzzling at first glance. After all, you can easily see a yellow object against an orange background but that combination does not draw your attention the same way as blue on yellow.
The reason a boundary of high color contrast is more attention getting can be traced to our primate origins, to when we swung arm over arm like Spiderman in the unruly treetops, in dim twilight or across great distances. Many fruits are red on green so our primate eyes will see them. The plants advertise themselves so animals and birds can spot them from a great distance, knowing they are ripe and ready to eat and be dispersed through defecation of the seeds. If trees on Mars were mainly yellow, we would expect to see blue fruits.
The law of contrast—juxtaposing dissimilar colors and/or luminances—might seem to contradict the law of grouping, which involves connecting similar or identical colors. And yet the evolutionary function of both principles is, broadly speaking, the same: to delineate and direct attention to object boundaries. In nature, both laws help species survive. Their main difference lies in the area over which the comparison or integration of colors occurs. Contrast detection involves comparing regions of color that lie right next to each other in visual space. This makes evolutionary sense because object boundaries usually coincide with contrasting luminance or color. Grouping, on the other hand, performs comparisons over wider distances. Its goal is to detect an object that is partially obscured, like a lion hiding behind a bush. Glue those yellow patches together perceptually, and it turns out to be one big lump shaped like a lion.
In modern times we harness contrast and grouping to serve novel purposes unrelated to their original survival function. For example, a good fashion designer will emphasize the salience of an edge by using dissimilar, highly contrasting colors (contrast), but will use similar colors for far-flung regions (grouping). As I mentioned in Chapter 7, red shoes go with a red shirt (conducive to grouping). It’s true, of course, that the red shoes aren’t an innate part of the red shirt, but the designer is tapping into the principle that, in your evolutionary past, they would have belonged to a single object. But vermilion scarf on a ruby-red shirt is hideous. Too much low contrast. Yet a high- contrast blue scarf on a red shirt will work fine, and it’s even better if the blue is flecked with red polka dots or floral prints.
Similarly, an abstract artist will use a more abstract form of the law of contrast to capture your attention. The San Diego Museum of Contemporary Art has in its contemporary art collection a large cube about three feet in diameter, densely covered with tiny metal needles pointing in random directions (by Tara Donovan). The sculpture resembles fur made of shining metal. Several violations of expectations are at work here. Large metal cubes usually have smooth surfaces but this one is furry. Cubes are inorganic while fur is organic. Fur is usually a natural brown or white, and is soft to touch, not metallic and prickly. These shocking conceptual contrasts endlessly titillate your attention.
Indian artists use a similar trick in their sculptures of voluptuous nymphs. The nymph is naked except for a few strings of very ornate coarsely textured jewelry draped on her (or flying off her chest if she is dancing). The baroque jewelry contrasts sharply with her body, making her bare skin look even more smooth and sensuous.
Isolation
Earlier I suggested that art involves creating images that produce heightened activation of visual areas in your
