brain and emotions associated with visual images. Yet any artist will tell you that a simple outline or doodle—say, Picasso’s doves or Rodin’s sketches of nudes—can be much more effective than a full color photo of the same object. The artist emphasizes a single source of information—such as color, form, or motion—and deliberately plays down or deletes other sources. I call this the “law of isolation.”
Again we have an apparent contradiction. Earlier I emphasized peak shift—hyperbole and exaggeration in art —but now I am emphasizing understatement. Aren’t the two ideas polar opposites? How can less be more? The answer: They aim to achieve different goals.
If you look in standard physiology and psychology textbooks, you will learn that a sketch is effective because cells in your primary visual cortex, where the earliest stage of visual processing occurs, only care about lines. These cells respond to the boundaries and edges of things but are insensitive to the feature-poor fill regions of an image. This fact about the circuitry of the primary visual area is true, but does it explain why a mere outline sketch can convey an extra vivid impression of what’s being depicted? Surely not. It only predicts that an outline sketch should be adequate, that it should be as effective as a halftone (the reproduction of a black-and-white photo). It doesn’t tell you why it’s more effective.
A sketch can be more effective because there is an attentional bottleneck in your brain. You can pay attention to only one aspect of an image or one entity at a time (although what we mean by “aspect” or “entity” is far from clear). Even though your brain has 100 billion nerve cells, only a small subset of them can be active at any given instant. In the dynamics of perception, one stable percept (perceived image) automatically excludes others. Overlapping patterns of neural activity and the neural networks in your brain constantly compete for limited attentional resources. Thus when you look at a full-color picture, your attention is distracted by the clutter of texture and other details in the image. But a sketch of the same object allows you to allocate all your attentional resources to the outline, where the action is.
FIGURE 8.1 Comparison between (a) Nadia’s drawing of a horse, (b) da Vinci’s drawing, and (c) the drawing of a normal eight-year-old.
Conversely, if an artist wants to evoke the
Great artists intuitively tap into the law of isolation, but evidence for it also comes from neurology—cases in which many areas in the brain are dysfunctional—and the “isolation” of a single brain module allows the brain to gain effortless access to its limited attentional resources, without the patient even trying.
One striking example comes from an unexpected source: autistic children. Compare the three illustrations of horses in Figure 8.1. The one on the right (Figure 8.1c) is by a normal eight-year-old child. Pardon me for saying so, but it’s quite hideous—completely lifeless, like a cardboard cutout. The one on the left (Figure 8.1a), amazingly, is by a seven-year-old mentally retarded autistic child named Nadia. Nadia can’t converse with people and can barely tie a shoelace, yet her drawing brilliantly conveys the
The answer comes from the law of isolation as well as the brain’s modular organization. (Modularity is a fancy term for the notion that different brain structures are specialized for different functions.) Nadia’s social awkwardness, emotional immaturity, language deficits, and retardation all stem from the fact that many areas in her brain are damaged and function abnormally. But maybe—as I suggested in my book
I suggest that poor functioning in many of Nadia’s brain areas results in freeing her spared right parietal—her
In an ironic twist, once Nadia reached adolescence, she became less autistic. She also completely lost her ability to draw. This observation lends credibility to the isolation idea. Once Nadia matured and gained some higher abilities, she could no longer allocate the bulk of her attention to the
In addition to reallocating attention, there may be actual anatomical changes in the brains of autistics that explain their creativity. Perhaps spared areas grow larger, attaining enhanced efficacy. So Nadia may have had an enlarged right parietal, especially the right angular gyrus, which would explain her profound artistic skills. Autistic children with savant skills are often referred to me by their parents, and one of these days I will get around to having their brains scanned to see if there are indeed spared islands of supergrown tissue. Unfortunately, this isn’t as easy as it sounds, as autistic children often find it very difficult to sit still in the scanner. Incidentally, Albert Einstein had huge angular gyri, and I once made the whimsical suggestion that this allowed him to combine numerical (left parietal) and spatial (right parietal) skills in extraordinary ways that we lesser mortals cannot even begin to imagine.
Evidence for the isolation principle in art can also be found in clinical neurology. For example, not long ago a physician wrote to me about epileptic seizures originating in his temporal lobes. (Seizures are uncontrolled volleys of nerve impulses that course through the brain the way feedback amplifies through a speaker and microphone.) Until his seizures began quite unexpectedly at the age of sixty, the physician had no interest whatsoever in poetry. Yet all of a sudden, voluminous rhyme poured out. It was a revelation, a sudden enrichment of his mental life, just when he was starting to get jaded.
A second example, from the elegant work of Bruce Miller, a neurologist at the University of California, San
