You can now see why detecting cancer early in the development of the tumour is so important. The larger a tumour becomes, the more likely it is to suffer the next mutation, both because of general probability and because the rapid proliferation of cells inside the tumour can easily lead to genetic mistakes, which can cause mutations. People who are especially susceptible to certain cancers often carry mutations in 'mutator' genes, which encourage mutation generally (the breast cancer genes
ment selects rabbits. It is not mysterious that mutations eventually show up in so many cases. Mutation is random, but selection is not.
Likewise, it is now clear why cancer is a disease that very roughly doubles in frequency every decade of our lives, being principally a disease of old age. In somewhere between a tenth and a half of us, depending on the country we live in, cancer will eventually get round the various tumour-suppressor genes, including
Let us take a closer look at the
long, and encodes the recipe for a simple protein, p53, that is normally rapidly digested by other enzymes so that it has a half-life of only twenty minutes. In this state, p53 is inactive. But upon receipt of a signal, production of the protein increases rapidly and destruction of it almost ceases. Exactly what that signal is remains shrouded in mystery and confusion, but damage to D N A is part of it. Bits of broken D N A seem somehow to alert p53. Like a criminal task force or S W A T team, the molecule scrambles to action stations. What happens next is that p53 takes charge of the whole cell, like one of those characters played by Tommy Lee Jones or Harvey Keitel who arrives at the scene of an incident and says something like: ' F B I : we'll take over from here.' Mainly by switching on other genes, p53 tells the cell to do one of two things: either to halt proliferation, stop replicating its D N A and pause until repaired; or to kill itself.
Another sign of trouble that alerts p53 is if the cell starts to run
short of oxygen, which is a diagnostic feature of tumour cells. Inside a growing ball of cancer cells, the blood supply can run short, so the cells begin to suffocate. Malignant cancers get over this problem by sending out a signal to the body to grow new arteries into the tumour - the characteristic, crab-claw-like arteries that first gave cancer its Greek name. Some of the most promising new cancer drugs block this process of 'angiogenesis', or blood-vessel formation.
But P53 sometimes realises what is happening and kills the tumour cells before the blood supply arrives. Cancers in tissues with poor blood supply, such as skin cancers, therefore must disable
Little wonder that p53 has earned the nickname 'Guardian of the Genome', or even 'Guardian Angel of the Genome'.
Scott Lowe, working at Cold Spring Harbor Laboratory, has an ingenious answer. These treatments do indeed cause a little D N A damage, he says, but not enough to kill the cells. Instead, the D N A damage is just sufficient to alert p53, which tells the cells to commit suicide. So chemotherapy and radiation therapy are actually, like D E A T H 239
vaccination, treatments that work by helping the body to help itself.
The evidence for Lowe's theory is good. Radiation, or treatment with 5 -fluorouracil, etoposide or adriamycin - three chemical cancer treatments - all encourage apoptosis in laboratory cells infected with a viral oncogene. And when hitherto tractable tumours relapse and suddenly fail to respond to treatment, the change correlates closely with a mutation knocking out
These insights are of great importance to the treatment of cancer.
A major branch of medicine has been acting under a large misappre-hension. Instead of looking for agents that kill dividing cells, doctors should have been looking for agents that encourage cell suicide.
That does not mean chemotherapy has been wholly ineffective, but it has been effective only by accident. Now that medical research knows what it is doing, the results should be more promising. In the short term it promises a less painful death for many cancer patients. By testing to see if
Oncogenes, in the unmutated state, are needed for cells to grow and proliferate normally throughout life: skin must be replaced, new blood cells generated, wounds repaired and so on. The mechanism for suppressing potential cancers must allow exceptions for normal growth and proliferation. Cells must frequently be given permission to divide, and must be equipped with genes that encourage division, so long as they stop at the right moment. How this feat is achieved is beginning to become clear. If we were looking at a man-made thing, we would conclude that a fiendishly ingenious mind must be behind it.