Повторительные вопросы

Что называется угловым градусом? Угловой минутой? – Как они обозначаются? – Какой угол называется центральным? – Что называется дуговым градусом? – Что такое транспортир? – Покажите на чертеже, как им пользоваться.

§ 13. Параллельные прямые. Углы при них

Мы знаем, что прямые линии при встрече образуют углы. [Бывает, однако, и такое расположение прямых на плоскости, когда они вовсе не встречаются, сколько бы их ни продолжали. Такие непересекающиеся линии на зываются п а р а л л е л ь н ы м и (черт. 33). Примером параллельных линий могут быть рельсы прямолинейного железнодорожного пути, линовка тетради и т. п.

Важнейшее свойство параллельных линий с л е д у ющ е е: когда прямая линия пересекает ряд параллельных (черт. 34), то образующиеся при этом так называемые с о о т в е т с т в е н н ы е углы равны. На черт. 34 соответственные углы 1, 2, 3, а также углы a, b, с– равны.

На черт. 35 из 8 образовавшихся углов равны между собою следующие с о о т в е т с т в е н н ы е углы:

1 и 5

2 и 6

3 и 7

4 и 8

Поэтому, если на черт. 35 уг. 1 = 50°, то и уг. 5 = 50°; если уг. 2 = 130°, то уг. 6 также равен 130°, – и т. д.

Предварительные упражнения

1) На черт. 35 уг. 1 равен 25°. Найти все прочие углы.

2) На черт. 35 уг. 6 равен 150°. Найти все прочие углы.

3) На черт. 35 уг. 1 равен а. Найти все прочие углы.

Из равенства соответственных углов вытекает равенство еще и других углов. Действительно, если уг. 1 = уг. 5, то и у г. 4 = у г. 5 (почему?). Далее: из того, что уг. 2 = у г. 6, следует, что и уг. 3 = уг. 6 (почему?). Рассуждая подобным образом, мы можем установить равенство следующих пар так называемых п е р е к р е с т н ы х углов:

4 и 5

3 и 6

2 и 7

1 и 8

Итак, мы установили:

П р и п а р а л л е л ь н ы х л и н и я х с о о т в е т с т в е н н ы е, а т а к ж е п е р е к р е с т н ы е у г л ы р а в н ы.

Предварительные упражнения

1) На черт. 35 уг. 3 = 160 °. Чему равен уг. 5?

2) На черт. 35 уг. 4 = 28 °. Чему равен уг. 6?

3) На черт. 35 уг. 2= 156°. Чему равен yrv 8?

Кроме перечисленных ранее углов, особые названия даются также следующим парам углов при параллельных линиях:

Углы этих пар не должны быть непременно равны между собою; они имеют другую особенность: сумма их составляет два прямых угла. Легко понять, почему это так: уг. 3 + уг. 4 = двум прямым углам; заменяя уг. 4 равным ему углом 5, узнаем, что уг. 3 + уг. 5 = двум прямым углам. Таким же образом убеждаемся, что углы остальных перечисленных пар в сумме равны двум прямым. Итак, запомним:

С о о т в е т с т в е н н ы е у г л ы, а т а к ж е п е р е к р е с т н ы е п р и п а р а л л е л ь н ы х р а в н ы м е ж д у

с о б о ю; п а р а о д н о с т о р о н н и х с о с т а в л я е т в м е с т е д в а п р я м ы х у г л а.

§ 14. Углы с параллельными сторонами

Предварительные упражнения

Начертите несколько пар углов, расположенных так, что стороны одного угла параллельны сторонам другого. Какие здесь возможны случаи? Возможно ли, чтобы обе пары параллельных сторон имели одинаковое направление (например, все направлялись бы влево от вершин углов)? Возможно ли, чтобы параллельные стороны имели встречное направление? Еще какое возможно здесь расположение?

Рассмотрим свойство углов, расположенных так, что стороны одного угла параллельны сторонам другого и притом одинаково направлены (считая от вершины; см. черт. 36). Нетрудно убедиться, что такие углы всегда равны: продолжив сторону одного угла до пересечения

со стороною другого угла (черт. 37), видим, что уг. 2 = уг. 3; уг. 1 = уг. 3; значит, уг. 1 = уг. 2. Это верно и при ином расположении углов с параллельными сторонами: когда обе стороны угла направлены п р о т и в о п о л о ж н о о б е и м сторонам другого (черт. 38). Убедиться в этом можно таким же образом, как и в сейчас рассмотренном случае.

Но если параллельные стороны двух углов имеют в одной паре одинаковое направление, в другой же паре – противоположное, то такие углы не равны (уг. 1 и уг. 2 на черт. 39). Продолжив одну сторону одного угла до пересечения со стороною другого угла, видим, что уг. 2 вместе с уг. 1 составляют два прямых угла (почему?);

Повторительные вопросы к §§ 13 и 14

Какие линии называются параллельными? – Покажите на чертеже соответственные углы, перекрестные, односторонние. – Какие из них при параллельных линиях равны? – Какое вам известно свойство односторонних углов? Углов с параллельными сторонами? Какие углы с параллельными сторонами равны и какие не равны? – Каким свойством отли чаются н е р а в н ы е углы с параллельными сторонами?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату