———————————————————————————————————

следовательно, эта задача решена правильно.

Если человек может привести хотя бы один такой факт или даже просто быть уверенным в возможности такого факта, когда в задаче, решенной неправильно, ответ совпадает с заданным, то тем самым он докажет, что вывод в данном случае сделан неправильно.

Разумеется, все эти приемы не могут заменить логических навыков, основанных на знании правил логики. Каждый из них по-своему ограничен и не может дать полной гарантии от ошибок в рассуждениях. Метод аналогии связан с необходимостью придумывать в каждом отдельном случае какой-то пример для сравнения, что удается далеко не всем и не всегда. К тому же применение аналогии без знания ее правил может привести к ошибочной аналогии. В результате сама проверка правильности рассуждения окажется неправильной. Применяя аналогию, нужно строго следить за тем, чтобы логическая форма того рассуждения, которое берется для сравнения, в точности совпадала с формой того рассуждения, правильность которого проверяется. В этом случае будет выполняться и первое правило аналогии о совпадении признаков или отношений в сравниваемых предметах и второе правило — о том, что если интересующий признак есть в одном предмете, то он есть и в другом. В самом деле, нас интересует в данном случае правильность вывода. А вывод в умозаключениях определяется, как мы знаем, исключительно строением умозаключения, его логической формой. Значит, если в умозаключении определенного строения вывод правильный, он обязательно будет правильным и в другом умозаключении, имеющем точно такое же строение. Другими словами, признак, сосуществующий с остальными признаками в одном предмете, сосуществует и в другом. Конечно, во многих случаях интуитивно удается подбирать правильные аналогии. Но это далеко не всегда. А ошибка в аналогии может привести к неправильному признанию или отрицанию того вывода, который проверяется с помощью этой аналогии.

Так, вывод «квадрат является равносторонним четырехугольником, следовательно, всякий равносторонний четырехугольник есть квадрат» является, несомненно, правильным. По аналогии с ним строится рассуждение «квадрат является фигурой с взаимно-перпендикулярными диагоналями, следовательно, всякая фигура с взаимно-перпендикулярными диагоналями есть квадрат». Однако ромб имеет взаимно-перпендикулярные диагонали, но ромб — это не квадрат. Следовательно, аналогия является неправильной. Почему? Потому что для сравнения взяты рассуждения, логически различные: в первом случае имеется общеутвердительное суждение, являющееся определением, поэтому его можно обращать в общеутвердительное; во втором случае — общеутвердительное суждение, не являющееся определением, поэтому его можно обращать только в частно-утвердительное: «некоторые фигуры с взаимно- перпендикулярными диагоналями — квадраты».

Все другие приемы также имеют свои недостатки.

Графические схемы можно применять в довольно ограниченном количестве случаев, так как далеко не все логические формы сводятся к отношениям объемов понятий. То же самое можно сказать и о сведении одних форм мышления к другим, как это было показано на примере категорических и условных силлогизмов. Сделать это бывает трудно, а часто и совсем невозможно. К тому же в процессе сведения может быть допущена логическая ошибка.

Наконец, ни один из этих приемов не дает возможности точно определять логическую сущность каждой ошибки и свободно ориентироваться в правильности и неправильности самых разнообразных рассуждений, выводов, доказательств и т. д. Действительную, по-настоящему высокую логическую культуру могут дать человеку только приобретенные прочные навыки правильного мышления, основанные на знании общих законов мышления и вытекающих из них логических правил.

,

Примечания

1

П. С. Моденов, Сборник конкурсных задач по математике с анализом ошибок, изд. «Советская наука», 1950, стр. 113.

2

См. Я. С. Дубнов, Ошибки в геометрических доказательствах, Гостехиздат, 1953, стр. 10.

3

См. там же, стр. 17—18.

4

См. В. И. Ленин, Соч., т. 15, стр. 17.

5

В. Шекспир, Избранные произведения, Гихл, 1953, стр. 271.

6

Н. В. Гоголь, Собр. соч., т. 2, Гихл, 1952, стр. 218.

7

Р. Бредбери, 451° по Фаренгейту, Издательство иностранной литературы, 1956, стр. 82.

8

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату