Для осуществления генетической программы развития пой-килотермным организмам необходимо получить извне определенное количество тепла. Это тепло измеряется суммой эффективных температур. Под
И порог развития, и сумма эффективных температур для каждого вида свои. Они зависят от исторической приспособленности к условиям жизни. Для семян растений умеренного климата, например гороха, клевера, порог развития низкий: их прорастание начинается при температуре почвы от 0 до +1 °C; более южные культуры – кукуруза и просо – начинают прорастать только при +(8-10) °С, а семенам финиковой пальмы для начала развития нужно прогревание почвы до +30 °C.
Сумму эффективных температур рассчитывают по формуле
где
Зная средний ход температур в каком-либо районе, можно рассчитать появление определенной фазы или число возможных генераций интересующего нас вида. Так, в климатических условиях Северной Украины может выплодиться лишь одна генерация бабочки яблонной плодожорки, а на юге Украины – до трех, что необходимо учитывать при разработке мер защиты садов от вредителей. Сроки цветения растений зависят от того, за какой период они набирают сумму необходимых температур. Для зацветания мать-и-мачехи под Петербургом, например, сумма эффективных температур равна 77, кислицы – 453, земляники – 500, а желтой акации – 700 °C.
Сумма эффективных температур, которую нужно набрать для завершения жизненного цикла, часто ограничивает географическое распространение видов. Например, северная граница лесной растительности приблизительно совпадает с июльскими изотермами +(10–12) °С. Севернее тепла для развития деревьев уже не хватает, и зона лесов сменяется безлесными тундрами.
Расчеты эффективных температур необходимы в практике сельского и лесного хозяйства, при борьбе с вредителями, интродукции новых видов и т. п. Они дают первую, приближенную основу для составления прогнозов. Однако на распространение и развитие организмов влияет множество других факторов, поэтому в действительности температурные зависимости оказываются более сложными.
Температурная компенсация. Ряд пойкилотермных видов, обитающих в условиях переменных температур, развивает возможность поддерживать более или менее постоянный уровень обмена веществ в довольно широких пределах изменения температуры тела. Это явление называется температурной компенсацией и происходит в основном за счет биохимических адаптаций. Например, у моллюсков на побережье Баренцева моря, таких, как брюхоногие литторины (Littorina littorea) и двустворчатые мидии (Mytilus edulis), интенсивность обмена, оцениваемая по потреблению кислорода, почти не зависит от температуры в тех пределах, с которыми моллюски встречаются ежедневно во время приливов и отливов. В весенне-летний период этот диапазон достигает более 20 °C (от +6 до +30 °C), и в холодной воде их метаболизм столь же интенсивен, как в теплом воздухе. Это обеспечивается действием ферментов, которые при понижении температуры меняют свою конфигурацию таким образом, что возрастает их сродство к субстрату и реакции протекают более активно.
Другие способы температурной компенсации связаны с заменой действующих ферментов сходными по функции, но работающими при иной температуре (изоферментами). Такие адаптации требуют времени, поскольку происходит инактивация одних генов и включение других с последующими процессами сборки белков. Подобная
Биохимические адаптации при всей их эффективности не представляют главный механизм противостояния неблагоприятным условиям. На самом деле они являются часто «крайним средством» и эволюционно вырабатываются у видов лишь тогда, когда невозможны другие способы, физиологические, морфо-анатомические или поведенческие, избегать экстремальных воздействий без перестройки основного химизма клеток. Ряд пойкилотермных организмов обладает возможностями частичной регуляции теплообмена, т. е. некоторыми способами увеличить поступление тепла в организм или отвести его избыток. В основном эти адаптации возникают у многоклеточных растений или животных и в каждой группе имеют свою специфику.
Элементы регуляции температуры у растений. Растения вырабатывают мало метаболического тепла вследствие эффективного перевода химической энергии из одних форм в другие, поэтому эндотермия не может быть использована ими для терморегуляции. Будучи организмами прикрепленными, они должны существовать при том тепловом режиме, который создается в местах их произрастания. Однако совпадение температур тела растения и среды скорее надо считать исключением, чем правилом, из-за разницы скоростей поступления и отдачи тепла. Высшие растения умеренно холодного и умеренно теплого поясов эвритермны. Тепловой режим растений весьма изменчив. Температура разных органов различна в зависимости от их расположения относительно падающих лучей и разных по степени нагретости слоев воздуха (рис. 14). Тепло поверхности почвы и приземного слоя воздуха особенно важно для тундровых и высокогорных растений. Приземистость, шпалерные и подушковидные формы роста, прижатость листьев розеточных и полурозеточных побегов к субстрату у арктических и высокогорных растений можно рассматривать как адаптацию к лучшему использованию тепла в условиях, где его мало (рис. 15).
А, Б
В рамках дана температура воздуха на высоте растения:
A – растение тундры Novosieversia glacialis,
Б – кактус Ferocactus wislisenii
В дни с переменной облачностью надземные органы растений испытывают резкие перепады температуры. Например, у дубравного эфемероида пролески сибирской, когда облака закрывают солнце, температура листьев может упасть с +(25–27) °С до +(10–15) °С, а затем, когда растения снова освещаются солнцем, поднимается до прежнего уровня. В пасмурную погоду температура листьев и цветков близка к температуре окружающего воздуха, но чаще бывает на несколько градусов ниже из-за транспирации. У многих растений разница температур заметна даже в пределах одного листа. Обычно верхушка и края листьев холоднее, поэтому при ночном охлаждении в этих местах в первую очередь конденсируется роса и образуется иней. При нагревании солнечными лучами температура растения может быть значительно выше температуры окружающего воздуха. Иногда эта разница доходит более чем до 20 °C, как, например, у крупных мясистых стеблей пустынных кактусов или стволов одиночно стоящих деревьев.
Основное средство отведения избытка тепла и предотвращения ожогов –