Глава 3. ВАЖНЕЙШИЕ АБИОТИЧЕСКИЕ ФАКТОРЫ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ

3.1. Температура

Температура отражает среднюю кинетическую скорость атомов и молекул в какой-либо системе. От температуры зависит и скорость в организме биохимических реакций, составляющих обмен веществ. Повышение температуры увеличивает количество молекул, обладающих энергией активации. Коэффициент, показывающий, во сколько раз изменяется скорость реакций при изменении температуры на 10 °C, обозначают Q10. Для большинства химических реакций величина этого коэффициента равна 2–3 (закон Вант-Гоффа). Изменения температуры приводят также к изменениям стереохимической специфичности макромолекул: третичной и четвертичной структуры белков, строения нуклеиновых кислот, организации мембран и других структур клетки. Так как величина Q10 для разных биохимических реакций различна, то изменения температуры могут сильно нарушить сбалансированность обмена веществ, если скорости сопряженных процессов изменятся различным образом. Сильное понижение температуры вызывает опасность такого замедления обмена веществ, при котором окажется невозможным осуществление основных жизненных функций организма. Критическим моментом является замерзание воды в клетках, так как появление кристалликов льда несовместимо с сохранением целостности внутриклеточных структур. Повышение температуры ведет к денатурации белков, в среднем в области около 60 °C, но рассогласование биохимических и физиологических процессов начинается раньше, уже при некотором превышении 42–43 °C. Излишнее усиление метаболизма при высоких температурах тела также может вывести организм из строя еще задолго до теплового разрушения ферментов, так как резко возрастают потребности в питательных веществах и кислороде, которые далеко не всегда могут быть удовлетворены. Таким образом, жизнь организмов в среде с низкими, высокими и колеблющимися температурами представляет сложную задачу адаптации, решаемую в ходе эволюции и индивидуального развития.

В процессе эволюции у живых организмов выработались разнообразные приспособления, позволяющие регулировать обмен веществ при изменениях температуры окружающей среды. Это достигается двумя путями: 1) различными биохимическими и физиологическими перестройками (изменение набора, концентрации и активности ферментов, обезвоживание, понижение точки замерзания растворов тела и т. д.); 2) поддержанием температуры тела на более стабильном уровне, чем температура окружающей среды, что позволяет не слишком нарушать сложившийся ход биохимических реакций.

3.1.1. Температурные границы существования видов

В среднем активная жизнедеятельность организмов требует довольно узкого диапазона температур, ограниченного критическими порогами замерзания воды и тепловой денатурации белков, примерно в пределах от 0 до +50 °C.Границы оптимальных температур соответственно должны быть еще более узкими. Однако реально эти границы преодолеваются в природе у многих видов за счет специфических адаптаций. Существуют экологические группы организмов, оптимум которых сдвинут в сторону низких или высоких температур.

Криофилы – виды, предпочитающие холод и специализированные к жизни в этих условиях. Свыше 80 % земной биосферы относится к постоянно холодным областям с температурой ниже +5 °C – это глубины Мирового океана, арктические и антарктические пустыни, тундры, высокогорья. Обитающие здесь виды обладают повышенной холодостойкостью. Основные механизмы этих адаптаций биохимические. Ферменты холодолюбивых организмов обладают такими особенностями строения, которые позволяют им эффективно понижать энергию активации молекул и поддерживать клеточный метаболизм при температурах, близких к 0 °C. Большую роль играют также механизмы, предотвращающие образование льда внутри клеток. При этом реализуются два основных пути – противостояние замерзанию (резистентность) и устойчивость к замерзанию (толерантность).

Биохимический путь противостояния замерзанию – накопление в клетках макромолекулярных веществ – антифризов, которые понижают точку замерзания жидкостей тела и препятствуют образованию кристаллов льда в организме. Такого типа холодовые адаптации обнаружены, например, у антарктических рыб семейства нототениевых, которые живут при температуре тела -1,86 °C, плавая под поверхностью сплошного льда в воде с такою же температурой (рис. 11). Мелкая тресковая рыба сайка в Северном Ледовитом океане плавает в водах с температурой не выше +5 °C, а нерестится зимой в переохлажденных водах у побережья. Глубоководные рыбы в приполярных районах все время находятся в переохлажденном состоянии.

Предельная температура, при которой еще возможна активность клеток, зафиксирована у микроорганизмов. В холодильных камерах мясные продукты могут быть испорчены за счет деятельности бактерий при температурах до -10-12 °C. Ниже этих температур роста и развития одноклеточных организмов не происходит.

Рис. 11. Антарктическая рыба трематом-пестряк с температурой тела -1,98 °C (см.: Жизнь животных. Т. 4. 1971)

Другой путь холодостойкости – выносливость к замерзанию – связан с временным прекращением активного состояния (гипобиозом или криптобиозом). Образование кристалликов льда внутри клеток необратимо нарушает их ультраструктуру и приводит к гибели. Но многие криофилы способны переносить образование льда во внеклеточных жидкостях. Этот процесс приводит к частичной дегидратации клеток, что повышает их устойчивость. У насекомых накопление защитных органических веществ, таких как глицерин, сорбит, маннит и других, препятствует кристаллизации внутриклеточных растворов и позволяет переживать критические морозные периоды в состоянии оцепенения. Так, жуки-жужелицы в тундрах выдерживают переохлаждение до -35 °C, накапливая к зиме до 25 % глицерина и снижая содержание воды в теле с 65 до 54 %. Летом глицерин в их теле не обнаруживается. Некоторые насекомые выдерживают зимой до -47 и даже -50 °C с замерзанием внеклеточной, но не внутриклеточной влаги. Морские обитатели практически не сталкиваются с температурами ниже -2 °C, но беспозвоночные приливно-отливной зоны (моллюски, усоногие раки и др.) зимой во время отлива переносят замерзание до – (15–20) °С. Клетки под микроскопом выглядят сморщенными, но кристаллов льда в них не обнаруживается. Устойчивость к замерзанию может проявляться и у эвритермных видов, оптимальные температуры развития которых далеки от 0 °C.

Термофилы – это экологическая группа видов, оптимум жизнедеятельности которых приурочен к области высоких температур. Термофилией отличаются многие представители микроорганизмов, растений и животных, встречающихся в горячих источниках, на поверхности прогреваемых почв, в разлагающихся органических остатках при их саморазогревании и т. п.

Верхние температурные пределы активной жизни отличаются у разных групп организмов. Наиболее устойчивы бактерии. У одного из видов архебактерий, распространенных на глубинах вокруг термальных источников («курильщиков»), экспериментально обнаружена способность к росту и делению клеток при температурах, превышающих +110 °C. Некоторые бактерии, окисляющие серу, как, например, Sulfolobus acidocaldarius, размножаются при +(85–90)°С. Обнаружена даже способность ряда видов расти в практически кипящей воде. Естественно, не все бактерии активны при столь высоких температурах, но разнообразие таких видов достаточно велико.

Верхние температурные пороги развития цианобактерий (сине-зеленых водорослей) и других фотосинтезирующих прокариот лежат в более низких пределах от +70 до +73 °C. Термофилы, растущие при +(60–75) °С, есть как среди аэробных, так и анаэробных бактерий, спорообразующих, молочнокислых, актиномицетов, метанообразующих и др. В неактивном состоянии спорообразующие бактерии выдерживают до +200 °C в течение десятков минут, что демонстрирует режим стерилизации предметов в автоклавах.

Термостабильность белков бактерий создается за счет значительного числа малых изменений в их первичной структуре и добавочных слабых связей, определяющих укладку молекул. В транспортных и рибосомных РНК термофилов повышено содержание гуанина и цитозина. Эта пара оснований более термостабильна, чем пара аденин – урацил.

Таким образом, выход температурной устойчивости за пределы средней нормы происходит в основном

Вы читаете Общая экология
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×