другом по аналогии с деталями часового механизма (рис. 163). Объединяясь в разных пропорциях в составе сложных органических молекул, синтезируемых в живых телах, атомы различных элементов вне живого вещества имеют свою «судьбу» в атмосфере, гидросфере и литосфере. Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызываются действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т. п.). Различают поэтому малые и большие круговороты в соответствии с объемом рассматриваемых экосистем: локальные биологические круговороты, биогеохимические циклы материков и океанов и, наконец, общепланетарный биогеохимический круговорот.

Рис. 163. Сопряжения циклов элементов в биосфере (по Г. А. Заварзину, 1998)

Вместе с тем отличительная черта биологических круговоротов – их неполная замкнутость. Часть химических элементов и их соединений постоянно выпадает из общей циркуляции и скапливается вне организмов, создавая своего рода запасы биогенных веществ. Так были накоплены кислород и азот в атмосфере, горючие ископаемые и другие породы земной коры. В масштабах геологического времени даже небольшое неравновесие в создании и разрушении органических веществ приводит к направленному преобразованию поверхностных слоев Земли.

Запасы биогенных веществ, мало доступные для живых организмов и медленно вовлекающиеся поэтому в биологический круговорот, составляют так называемый резервный фонд того или иного химического элемента в биосфере (например, кальция в карбонатных породах). Другая часть, интенсивно циркулирующая между телами организмов и окружающей средой, называется подвижным, или обменным, фондом. Соотношения между резервным и обменным фондами в биосфере у всех биогенных элементов различны.

Углерод. Углерод как химический элемент является основой жизни. Он может соединяться разными способами со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35 % от веса земной коры), но в живом веществе в среднем составляет около 18 или 45 % от сухой биомассы.

В атмосфере углерод входит в состав углекислого газа СО2, в меньшей мере – в состав метана СН4 или следового количества других газообразных соединений. В гидросфере СО2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул СО2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО3– и СО2-3. Эти ионы реагируют с катионами кальция или магния с выпадением карбонатов в осадок. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды. При подкислении (увеличении концентрации ионов Н+) происходит сдвиг влево в цепи: СО2 воздуха > СО2 воды > Н2СО3 > Са(НСО3)2 > СаСО3. При подщелачивании усиливается выпадение в осадок карбонатов кальция.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли (рис. 164). Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов – бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 164. Круговорот углерода в биосфере (по Б. Болину, 1972)

Особенно активно происходит возврат в атмосферу СО2 из почвы, где сосредоточена деятельность многочисленных групп деструкторов и редуцентов и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда СО2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус – богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус является носителем почвенного плодородия, поскольку разрушается определенными группами микроорганизмов медленно и постепенно, обеспечивая равномерное питание растений. Гумус почв является одним из важных резервуаров углерода на суше.

В тех условиях, где деятельность деструкторов тормозится факторами внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т. п. Однако основным резервным фондом углерода на планете являются не живые организмы и не горючие ископаемые, а осадочные породы – известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоранивается в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биологическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4–5 лет, запасы в почвенном гумусе – за 300–400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая часть его (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

По учетам в сети глобального мониторинга это уже приводит к повышению концентрации СО2 в атмосфере, последствия чего для судьбы человеческого общества усиленно обсуждаются и требуют научно обоснованного прогнозирования.

Кислород. С углеродным циклом теснейшим образом сопряжен круговорот кислорода.

Своей уникальной среди планет атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. Кислород освобождается из молекул воды и является по сути дела побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемыми фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше на равный объем по сравнению с воздухом.

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О2 в атмосфере составляет не более 5 % от общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

Накопление кислорода в атмосфере и гидросфере происходит в геологической истории в результате неполной замкнутости цикла углерода. На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы

Вы читаете Общая экология
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×