мы рассмотрим в главе 3 , а потоки — в главе 4 . В изложении материала этой книги мы будем придерживаться того, что распределенные программы разбиваются только на процессы. Многопоточность ограничивается параллелизмом. Формально параллельные программы иногда бывают распределенными, например, при PVM-программировании ( P arallel V irtual M achine — параллельная виртуальная машина). Распределенное программирование иногда используется для реализации параллелизма, как в случае с MPI-программированием (Message Passing Interface — интерфейс для передачи сообщений). Однако не все распределенные программы включают параллелизм. Части распределенной программы могут выполняться по различным запросам и в различные периоды времени. Например, программу календаря можно разделить на две составляющие. Одна часть должна обеспечивать пользователя информацией, присущей календарю, и способом записи данных о важных для него встречах, а другая часть должна предоставлять пользователю набор сигналов для разных типов встреч. Пользователь составляет расписание встреч, используя одну часть ПО, в то время как другая его часть выполняется независимо от первой. Набор сигналов и компонентов расписания вместе образуют единое приложение, которое разделено на две части, выполняемые по отдельности. При чистом параллелизме одновременно выполняемые части являются компонентами одной и той же программы. Части распределенных приложений обычно реализуются как отдельные программы. Типичная архитектура построения параллельной и распределенной программ показана на рис. 1.1.

Рис 1.1 Типичная архитектура построения параллельной и распределенной программ

Параллельное приложение, показанное на рис. 1.2, состоит из одной программы, разделенной на четыре задачи. Каждая задача выполняется на отдельном процессоре, следовательно, все они могут выполняться одновременно. Эти задачи можно реализовать в 1.2, состоит из трех отдельных программ, каждая из которых выполняется на отдельном компьютере [3]. При этом программа 3 состоит из двух отдельных частей (задачи А и задачи D), выполняющихся на одном компьютере. Несмотря на это, задачи А и D являются распределенными, поскольку они реализованы как два отдельных процесса. Задачи параллельной программы более тесно связаны, чем задачи распределенного приложения. В общем случае процессоры, связанные с распределенными программами, находятся на различных компьютерах, в то время как процессоры, связанные с программами, реализующими параллелизм, находятся на одном и том же компьютере. Конечно же, существуют гибридные приложения, которые являются и параллельными, и распределенными одновременно. Именно такие гибридные объединения становятся нормой.

Преимущества параллельного программирования

Программы, надлежащее качество проектирования которых позволяет воспользоваться преимуществами параллелизма, могут выполняться быстрее, чем их последовательные эквиваленты, что повышает их рыночную стоимость. Иногда скорость может спасти жизнь. В таких случаях быстрее означает лучше. Иногда решение некоторых проблем представляется естественнее в виде коллекции одновременно выполняемых задач. Это характерно для таких областей, как научное программирование, математическое и программирование искусственного интеллекта. Это означает, что в некоторых ситуациях технологии параллельного программирования снижают трудозатраты разработчика ПО, позволяя ему напрямую реализовать структуры данных, алгоритмы и эвристические методы, разрабатываемые учеными. При этом используется специализированное оборудование. Например, в мультимедийной программе с широкими функциональными возможностями с целью получения более высокой производительности ее логика может быть распределена между такими специализированными процессорами, как микросхемы компьютерной графики, цифровые звуковые процессоры и математические спецпроцессоры. К таким процессорам обычно обеспечивается одновременный доступ. МРР-компьютеры (Massively Parallel Processors — процессоры с массовым параллелизмом) имеют сотни, а иногда и тысячи процессоров, что позволяет их использовать для решения проблем, которые просто не реально решить последовательными методами. Однако при использовании МРР-компьютеров (т.е. при объединении скорости и «грубой силы») невозможное становится возможным. К категории применимости МРР-компьютеров можно отнести моделирование экологической системы (или моделирование влияния различных факторов на окружающую среду), исследование космического пространства и ряд тем из области биологических исследований, например проект моделирования генома человека. Применение более совершенных технологий параллельного программирования открывает двери к архитектурам ПО, которые специально разрабатываются для параллельных сред. Например, существуют специальные мультиагентные архитектуры и архитектуры, использующие методологию «классной доски», разработанные специально для среды с параллельными процессорами.

Простейшая модель параллельного программирования (PRAM)

В качестве простейшей модели, отражающей базовые концепции параллельного программирования, рассмотрим модель PRAM (Parallel Random Access Machine — параллельная машина с произвольным доступом). PRAM — это упрощенная теоретическая модель с n процессорами, которые используют общую глобальную память. Простая модель PRAM изображена на рис. 1.2.

Рис 1-2 Простая модель PRAM

Все процессоры имеют доступ для чтения и записи к общей глобальной памяти. В PRAM-среде возможен одновременный доступ. Предположим, что все процессоры могут параллельно выполнять различные арифметические и логические операции. Кроме того, каждый из теоретических процессоров (см. рис. 1.2) может обращаться к общей памяти в одну непрерываемую единицу времени. PRAM-модель обладает как параллельными, так и исключающими алгоритмами считывания данных. Параллельные алгоритмы считывания данных позволяют одновременно обращаться к одной и той же области памяти без искажения (порчи) данных. Исключающие алгоритмы считывания данных используются в случае, когда необходима гарантия того, что никакие два процесса никогда не будут считывать данные из одной и той же области памяти одновременно. PRAM-модель также обладает параллельными и исключающими алгоритмами записи данных. Параллельные алгоритмы позволяют нескольким процессам одновременно записывать данные в одну и ту же область памяти, в то время как исключающие алгоритмы гарантируют, что никакие два процесса не будут записывать данные в одну и ту же область памяти одновременно. Четыре основных алгоритма считывания и записи данных перечислены в табл. 1.1.

Таблица 1.1. Четыре базовых алгоритма считывания и записи данных

EREW Исключающее считывание/исключающая запись

CREW Параллельное считывание/исключающая запись

ERCW Исключающее считывание/параллельная запись

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату