1. Более точно это является средневековой концепцией с историческими корнями, восходящими к Аристотелю.
2. Как мы будем обсуждать в книге позже, имеются ситуации (такие как Большой взрыв и черные дыры), которые все еще представляют много загадочного, по меньшей мере, в части, возникающей из-за экстремально малого размера или гигантских плотностей, которые заставляют даже более утонченную теорию Эйнштейна терпеть неудачу. Так что приведенное здесь утверждение применимо для всех обстоятельств, кроме экстремальных, в которых сами известные законы становятся сомнительными.
3. Первые читатели этого текста, которые, неожиданно, оказались частично сведущими в культе Вуду, проинформировали меня, что кое-что представляется переходящим от места к месту, чтобы проявиться в идях последователей Вуду, а именно – дух. Так что мой пример Вуду как причудливого нелокального процесса может, в зависимости от вашего отношения к Вуду, быть неадекватным. Тем не менее, идея ясна.
4. Чтобы избежать путаницы, позвольте мне еще раз подчеркнуть вывод, что когда я говорю 'Вселенная не является локальной' или 'нечто, что мы делаем здесь, может переплетаться с чем-то там', я не имею в виду возможность оказать мгновенное намеренное влияние на что-то удаленное. Вместо этого, как будет ясно, эффект, на который я ссылаюсь, проявляется как корреляции между событиями, – обычно в форме корреляций между результатами измерений, – имеющими место в удаленных местах (местах, для которых не может быть достаточно времени, чтобы даже свет успел пропутешествовать от одного к другому). Таким образом, я ссылаюсь на то, что физики называют
5. Квантовая механика делает предсказания о микромире, которые фантастически хорошо согласуются с экспериментальными наблюдениями. На этот счет имеется универсальное согласие. Тем не менее, поскольку детальные свойства квантовой механики, как обсуждается в этой главе, существенно отличаются от особенностей повседневного опыта, и, соответственно, поскольку имеются различные математические формулировки теории (и различные формулировки того, как теория преодолевает зазор между микромиром явлений и макромиром измеряемых результатов), нет консенсуса насчет того, как интерпретировать различные особенности теории (и различные загадочные данные, которые теория, тем не менее, в состоянии объяснить математически), включая проблему нелокальности. В этой главе я выбрал отдельную точку зрения, которую я нахожу самой убедительной, основываясь на современных теоретических представлениях и экспериментальных результатах. Но я делаю акцент здесь, что не всякий согласится с этим взглядом, и в последующем комментарии после более полного объяснения этой точки зрения я коротко отмечу некоторые из других точек зрения и обозначу, где вы можете почитать о них более подробно. Позвольте мне также обратить внимание, как мы будем обсуждать дальше, что эксперименты противоречат вере Эйнштейна, что данные могут быть объяснены исключительно на основе частиц, всегда имеющих определенные, хотя и скрытые, свойства без какого-либо использования или упоминания нелокального запутывания. Однако, неудача этой точки зрения только отвергает локальную вселенную. Она не отбрасывает возможности, что частицы имеют такие определенные скрытые свойства.
6. Для склонного к математике читателя позвольте мне отметить один потенциально вводящий в заблуждение аспект этого описания. Для многочастичных систем вероятностная волна (волновая функция в стандартной терминологии), по существу, имеет ту же интерпретацию, которая только что была описана, но определяется как функция на конфигурационном пространстве частиц (для отдельной частицы конфигурационное пространство изоморфно реальному пространству, но для системы N частиц оно имеет 3N измерений). Это важно иметь в виду, когда мы обдумываем вопрос, является ли волновая функция реальной физической сущностью или просто математическим приемом, поскольку если она занимает первую позицию, необходимо будет принять реальность конфигурационного пространства тоже – интересная вариация тем Глав 2 и 3. Поля в релятивистской квантовой теории поля могут быть определены в обычных четырех пространственно-временных измерениях повседневного опыта, но там тоже имеется некоторая менее широко используемая формулировка, которая требует обобщенные волновые функции – так называемые волновые функционалы, определяемые на еще более абстрактном пространстве, пространстве полей.
7. Эксперименты, на которые я тут ссылаюсь, это эксперименты по фотоэлектрическому эффекту, в которых свет падает на различные металлы, заставляя электроны вылетать из поверхности металла. Экспериментаторы нашли, что чем больше интенсивность света, тем большее количество электронов эмитируется. Более того, эксперименты обнаружили, что энергия каждого испущенного электрона определяется цветом – частотой – света. Это, как доказал Эйнштейн, легко понять, если луч света составлен из частиц, поскольку большая интенсивность света переводится в большее количество частиц света (фотонов) в луче – а чем больше имеется фотонов, тем с большим числом электронов они столкнутся, а потому большее число электронов вылетит из поверхности металла. Более того, частота света определяет энергию каждого фотона, а потому и энергию каждого испущенного электрона, что точно подтверждается данными опыта. Корпускулярные свойства фотонов, наконец, были подтверждены Артуром Комптоном в 1923 в экспериментах, включающих упругое рассеяние фотонов и электронов.
8. Institut International de Physique Solvay,
9. Irene Born, trans.,
10. Henry Stapp,
11. Дэвид Бом находится среди самых творческих умов, которые работали в квантовой механике на протяжении двадцатого века. Он родился в Пенсильвании в 1917 и был студентом Роберта Оппенгеймера в Беркли. Во время преподавания в Принстонском Университете он был вызван в Комитет по расследованию