8. Как и в предыдущих главах под 'наблюдаемой вселенной' я подразумеваю часть вселенной, с которой мы могли бы, по меньшей мере, в принципе, иметь сообщение в течение времени с момента Большого взрыва. Во вселенной, которая бесконечна в пространственном протяжении, как обсуждалось в Главе 8, все пространство
9. Леонард Сасскайнд в 'Элегантной вселенной', NOVA, трехчасовые серии Государственной службы радиовещания (PBS), впервые вышло в эфир 28 октября и 4 ноября 2003 (запись можно посмотреть здесь: http://www.pbs.org/wgbh/nova/transcripts/3012_elegant.html ).
10. На самом деле сложность проведения экспериментального тестирования для теории суперструн представляет собой ключевое препятствие, одно из тех, что существенно затрудняет подтверждение теории. Однако, как мы увидим в последних главах, в этом направлении был сделан немалый прогресс; струнные теоретики сильно надеются, что планируемые ускорители и эксперименты в открытом космосе обеспечат, по меньшей мере, подробные подтверждения в поддержку теории, а при удаче, может быть, даже больше.
11. Хотя я не касался этого явно в тексте, замечу, что каждая известная частица имеет
12. Как мы увидим в Главе 13, недавние работы по теории струн наводят на мысль, что струны могут быть намного больше планковской длины, и это дает множество критических последствий, – включая возможность сделать теорию экспериментально проверяемой.
13. Существование атомов сначала доказывалось косвенными путями (как объяснение особых пропорций, в которых различные химические вещества могут соединяться, а позже через броуновское движение); существование первых черных дыр было подтверждено (к удовлетворению многих физиков) через наблюдение их влияния на газ, который падает на них с расположенных рядом звезд, а не через 'наблюдение' их непосредственно.
14. Поскольку даже тихо колеблющаяся струна имеет
15. Для склонного к математике читателя наиболее точное утверждение в том, что
16. Не слишком трудно понять в грубых терминах, как планковская длина вкралась в анализ Кляйна. ОТО и квантовая механика привлекают три фундаментальных константы природы:
17. Присоединение частицы с электрическим зарядом и с относительно маленькой массой оказывается труднопредодолимой проблемой.
18. Заметим, что требование однородной симметрии, которое мы использовали в Главе 8, чтобы сузить количество форм вселенной, мотивируется астрономическими наблюдениями (такими как наблюдения микроволнового фонового излучения) внутри трех больших измерений. Эти симметрийные ограничения не влияют на форму возможных шести мельчайших дополнительных измерений.
19. Вы можете поинтересоваться, возможны ли не только дополнительные пространственные измерения, но также и дополнительные временные измерения. Исследователи (такие как Ицхак Барс из Университета Южной Калифорнии) исследовали эту возможность и показали, что, по меньшей мере, возможно сформулировать теорию со вторым временным измерением, которая кажется физически обоснованной. Но является ли это второе временное измерение реальным на пару с обычным временным измерением, или это только математический трюк, никогда полностью не устанавливалось; общее ощущение скорее в пользу второго, чем первого. По контрасту с этим, прямое прочтение теории струн говорит, что дополнительные пространственные измерения являются во всех отношениях столь же реальными, как и три, которые мы знаем.
20. Эксперты по струнной теории (и те, кто прочитал