одну спереди.[13] Сопровождающее письмо информирует их, что сфера внутри каждой коробочки теперь хаотически выбирает между красными вспышками и синими вспышками, когда любая одна из трех дверок коробочки открыта. Если у Малдера и Скалли открыты разные дверки (верхняя против боковой против передней) на данной коробочке, цвет, случайно выбираемый сферой, может отличаться, но раз одна дверка открыта и сфера мигнула, нет способа определить, что произойдет, когда будет выбрана другая дверка. (В физических приложениях это свойство фиксирует квантовую неопределенность: раз уж вы измерили одно свойство, вы не можете сказать чего-либо по поводу других). Наконец, письмо говорит им, что опять имеется таинственная связь, странное запутывание между двумя наборами титановых коробочек: даже если все сферы хаотически выбирают, каким цветом им мигать, когда одна из трех дверок на их коробочках открыта, если как Малдер, так и Скалли откроют одинаковую дверку на коробочке с одинаковым номером, письмо предсказывает, что они увидят вспышку одинакового цвета. Если Малдер откроет верхнюю дверку на своей коробочке 1 и увидит синий цвет, тогда письмо предсказывает, что Скалли также увидит синий цвет, если она откроет верхнюю дверку на ее коробочке 1; если Малдер откроет боковую дверку на его коробочке 2 и увидит красный, тогда письмо предсказывает, что Скалли также увидит красный, если откроет боковую дверку на ее коробочке 2, и так далее. Конечно, когда Скалли и Малдер откроют первые несколько дюжин коробочек, – согласовывая по телефону, какую дверку открывать на каждой, – они проверят предсказания письма.

Хотя Малдер и Скалли поставлены в немного более сложную ситуацию, чем ранее, на первый взгляд кажется, что те же объяснения, которые Скалли использовала ранее, одинаково хороши и здесь.

'Малдер,' – говорит Скалли, – 'это такая же глупая посылка, как и вчерашняя. И опять, тут нет тайны. Сфера внутри каждой коробочки должна быть просто запрограммирована. Ты не видишь?'

'Но теперь тут три дверки,' – предостерегает Малдер, – 'так что сфера не может 'знать', какую дверку мы будем открывать, правильно?' 'Это и не нужно,' – объясняет Скалли. – 'Это часть программы. Посмотри, вот пример. Возьми быстренько следующую неоткрытую коробочку, номер 37, и я сделаю то же самое. Теперь представь, для обсуждения, что сфера в моей коробочке 37 запрограммирована, скажем, мигать красным, если открыта верхняя дверка, синим, если открыта боковая, и снова красным, если открыта фронтальная дверка. Я называю это программу красный, синий, красный. Тогда ясно, что кто бы ни послал нам этот материал, он вложил в твою коробочку 37 ту же самую программу, и если мы оба откроем одинаковые дверки, мы увидим одинаковые цвета вспышек. Это объясняет 'таинственную связь': если коробочки в наших соответствующих коллекциях с теми же номерами запрограммированы одинаковыми инструкциями, то мы будем видеть одинаковые цвета, если мы окрываем одинаковые дверки. Тут нет тайны!'

Но Малдер не верит, что сферы запрограммированы. Он верит письму. Он верит, что сферы хаотически выбирают между красным и синим, когда одна из дверок на их коробочке открыта, и отсюда он пылко верит, что его коробочки и коробочки Скалли имеют некоторую таинственную дальнодействующую связь.

Кто прав? Поскольку нет способа проверить сферы перед или во время предполагаемого случайного выбора цвета (вспомним, каждое такое тайное действие немедленно приводит сферу к случайному выбору между красным и синим, расстраивая любые попытки исследовать, как она реально работает), кажется невозможным определенно проверить, кто прав, Малдер или Скалли.

Однако, что удивительно, после небольшого раздумья Малдер осознал, что имеется эксперимент, который решит вопрос полностью. Рассуждения Малдера прямолинейны, но они требуют коснуться чуть более явных математических обоснований, чем мы это делали ранее для большинства рассмотренных вещей. Это определенная цена за попытку проследовать за деталями – их не то, чтобы много, – но не расстраивайтесь, если некоторые из них проскользнут мимо, мы коротко суммируем ключевые заключения.

Малдер осознал, что он и Скалли могут не только рассмотреть, что случится, если они каждый откроют одинаковые дверки в коробочке с данным номером. И, как он возбужденно излагает Скалли после ее обратного звонка, можно изучить вариант, когда они не всегда выбирают одинаковые дверки и, вместо этого, случайным образом и независимо выбирают, какую дверку открыть в каждой из их коробочек.

'Малдер, пожалуйста. Просто дай мне насладиться моим отпуском. Что мы можем изучить, делая это?'

'Хорошо, Скалли, мы можем определить, является ли твое объяснение правильным или ложным'.

'Ладно, я слушаю'.

'Это просто,' – продолжает Малдер. – 'Если ты права, тогда будет то, что я осознал: если ты и я отдельно друг от друга и случайным образом выберем, какую дверку открыть в данной коробочке, мы должны найти, что мы увидим одинаковые цвета вспышек более чем в 50 процентов случаев. Но если это не так, если мы найдем, что цвета вспышек не совпадают более чем в 50 процентах коробочек, тогда ты не можешь быть права.'

'В самом деле, почему так?' – Скалли немного заинтересовалась.

'Хорошо,' – продолжает Малдер, – 'есть пример. Предположим, что ты права и каждая сфера работает в соответствии с программой. Просто для конкретности представим, что программа для сферы в отдельной коробочке производит синий, синий и красный цвета. Теперь, поскольку мы оба выбираем одну из трех дверок, всего имеется девять возможных комбинаций дверок, которые мы можем выбрать для открывания для данной коробочки. Например, я могу выбрать верхнюю дверку на моей коробочке, тогда как ты можешь выбрать боковую дверку на твоей коробочке; или я могу выбрать фронтальную дверку, а ты можешь выбрать верхнюю дверку; и так далее.'

'Да, конечно.' – Скалли подскочила. – 'Если мы назовем верхнюю дверку 1, боковую дверку 2, а фронтальную дверку 3, то девять возможных комбинаций дверок это просто (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) и (3,3).'

'Да, все верно,' – продолжает Малдер. – 'Теперь важный момент: Из этих девяти возможностей отметим, что пять комбинаций дверок – (1,1), (2,2), (3,3), (1,2) и (2,1) – приводят к тому результату, что мы видим, как сферы в наших коробочках вспыхивают одинаковыми цветами. Первые три комбинации дверок те самые, в которых мы выбираем одинаковые дверки, и, как мы знаем, это всегда приводит к тому, что мы видим одинаковые цвета. Остальные две комбинации дверок (1,2) и (2,1) приводят к тем же самым цветам, поскольку программа диктует, что сферы будут мигать одним цветом – синим – если или дверка 1 или дверка 2 открыты. Итак, поскольку 5 больше, чем половина от 9, это значит, что для более чем половины – более чем 50 процентов – возможных комбинаций дверок, которые мы можем выбрать для открывания, сферы будут вспыхивать одинаковым цветом.'

'Но подожди,' – протестует Скалли. – 'Это только один пример особой программы: синий, синий, красный. В моем объяснении я предполагала, что коробочки с разными номерами могут и в общем случае будут иметь разные программы.'

'В действительности, это не имеет значения. Вывод действует для любых из возможных программ. Смотри, мои рассуждения с синим, синим, красным в качестве программы связаны только с тем фактом, что два цвета в программе одинаковы, так что идентичное заключение следует для любой программы: красный, красный, синий или красный, синий, красный и так далее. Любая программа имеет как минимум два одинаковых цвета: программы, которые на самом деле отличаются, это те, в которых все три цвета одинаковы – красный, красный, красный и синий, синий, синий. Но для коробочек с любой из таких программ мы имеем одинаковый цвет вспышки безотносительно к тому, какую дверку мы открыли, так что общая доля вариантов, в которых мы должны увидеть одинаковые цвета, будет только расти. Итак, если твое объяснение правильно и коробочки действуют в соответствии с программами, – даже с программами, которые меняются от одной коробочки к другой, – мы должны согласиться, что мы увидим одинаковые цвета более чем в 50 процентах случаев.'

Таков аргумент. Трудная часть закончилась. Суть в том, что имеется тест для определения, права ли Скалли и действует ли каждая сфера в соответствии с программой, которая однозначно определяет, какой цвет вспыхнет в зависимости от того, какая дверка открыта. Если она и Малдер независимо и случайно выберут, какую из трех дверок на каждой из их коробочек открывать, а затем сравнят увиденные ими цвета – коробочка за следующей коробочкой – они должны найти согласие более чем в 50 процентах коробочек.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату