теннисным мячом, означают, что если, гипотетически, мы были бы в состоянии одновременно поменять на обратную скорость каждого атома и молекулы, вовлеченных прямо или косвенно в процесс разбивания яйца, все движения при разбивании яйца будут происходить в обратном направлении.
Еще раз, точно как с теннисным мячом, если мы преуспеем в обращении всех этих скоростей, то, что мы увидим, будет похоже на прокручиваемую в обратном направлении пленку. Но, в отличие от теннисного мяча, обращение движения разбивающегося яйца будет чрезвычайно впечатляющим. Волна колеблющихся молекул воздуха и мельчайшие сотрясения пола соберутся в месте падения со всех частей кухни, заставив каждый кусочек скорлупы и каплю желтка направиться обратно к месту удара. Каждый ингредиент будет двигаться в точности с той же скоростью, которую он имел в исходном процессе разбивания яйца, но каждый будет теперь двигаться в противоположном направлении. Капли желтка будут лететь назад в шарик, точно так же как зубцы маленьких кусочков скорлупы, достигнувших окраины шарика, будут полностью выстроены для соединения вместе в гладкий яйцевидный контейнер. Колебания пола и воздуха будут точно состыкованы с движениями мириад соединяющихся капель желтка и кусочков скорлупы, чтобы дать заново сформированное яйцо, которое одним толчком подпрыгнет с пола в виде одного куска, взлетит на кухонный стол, мягко приземлится на его край с достаточным вращательным движением, чтобы откатиться на несколько дюймов и элегантно вернуться к началу. Это все будет происходить, если мы решим задачу тотального и точного обращения скоростей всего, что было задействовано.[3] Так что, является ли событие простым, вроде полета по дуге теннисного мяча, или чем-то более сложным, вроде разбивания яйца, законы физики показывают, что то, что происходит в одном направлении времени, может, по крайней мере, в принципе, также происходить и в обратном направлении.
Принципы и практика
Истории о теннисном мяче и яйце дают более чем иллюстрацию симметрии по отношению к обращению времени в законах природы. Они также наводят на мысль, почему в действительном мире случая мы видим многие вещи происходящими одним способом и никогда не происходящими обратным способом. Отправить теннисный мяч повторить свой путь назад было не тяжело. Мы хватали его и неоднократно направляли его с той же самой скоростью, но в обратном направлении. Это так. Но заставить все хаотические остатки яйца воспроизвести их пути назад будет куда более тяжело. Мы должны захватить каждый кусочек разбитого яйца и одновременно направить каждый с той же скоростью, но в противоположном направлении. Ясно, что это находится за пределами того, что мы (или вся королевская конница и вся королевская рать) реально можем сделать.
Нашли ли мы ответ, который искали? Является ли причина того, почему яйца разбиваются, но не собираются воедино, даже если оба действия допускаются законами физики, вопросом того, что является, а что не является осуществимым на практике? Нет ли решения просто в том, что легко сделать яйцо разбитым – катнуть его по столу, – но экстраординарно сложно сделать его снова неразбитым?
Ну, если бы это был ответ, поверьте мне, я не стал бы возводить его в такую великую проблему. Спор простоты против сложности является существенной частью ответа, но полная история, в рамках которой все происходит, намного более тонкая и удивительная. Мы получим ее должным образом, но сначала мы должны сделать обсуждение этой секции чуть более точным. Это приводит нас к концепции
Энтропия
На могильном камне на Центральном кладбище в Вене рядом с могилами Бетховена, Брамса, Шуберта и Штрауса выгравировано простое уравнение S = k log W, которое выражает математическую формулировку мощной концепции, известной как энтропия. Могильный камень несет на себе имя Людвига Больцмана, одного из наиболее проницательных физиков, работавших в течение последнего столетия. В 1906, с подорванным здоровьем и страдая от депрессии, Больцман совершил самоубийство во время отдыха со своей женой и дочерью с Италии. По иронии судьбы как раз несколькими месяцами позже эксперименты, начатые для подтверждения того, что идеи Больцмана, пылко отстаивая которые, он истощил свою жизнь, оказались успешными.
Понятие энтропии впервые было разработано во время промышленной революции учеными, интересовавшимися работой печей и паровых двигателей, что помогло разработать область термодинамики. После многих лет исследований основные идеи были резко пересмотрены, получив высшее воплощение в подходе Больцмана. Его версия энтропии, лаконично выраженная в уравнении на его надгробии, использует статистические обоснования для обеспечения связи между гигантским числом индивидуальных частей, составляющих физическую систему, и общими свойствами, которые система имеет.[4]
Чтобы почувствовать эти идеи, представим себе копию
Энтропия представляет собой понятие, которое делает эту идею точной путем подсчета количества способов, согласующихся с законами физики, в которых любая данная физическая ситуация может быть реализована. Высокая энтропия означает, что имеется много способов; низкая энтропия означает, что имеется несколько способов. Если страницы
В принципе, вы можете использовать законы классической физики, чтобы точно определить, где приземлится каждая страница после того, как целая пачка была подброшена в воздух. Так же, опять в принципе, мы можем точно предсказать итоговое расположение страниц [7] и отсюда (в отличие от квантовой механики, которую мы игнорируем до следующей главы) будет казаться, что нет необходимости полагаться на вероятностные понятия, такие как какой результат является более или менее вероятным по сравнению с другим. Но статистические понятия являются как действенными, так и удобными. Если
Более того – и это является критически важным – получить точный ответ нельзя будет, даже если бы мы были способны. Когда вы исследуете окончательную стопку страниц, вы гораздо меньше интересуетесь точными деталями, какая страница где оказалась, чем главным вопросом, расположились ли страницы в