моменту вблизи самого нуля времени – времени Большого взрыва – вся известная вселенная сожмется до размера, по сравнению с которым точка в конце этого предложения выглядит гигантской.

Рис 8.10 Космическая история – пространственно-временной 'батон' – для вселенной, которая плоская и имеет конечную пространственную протяженность. Нечеткость наверху обозначает недостаток наших знаний об областях вблизи начала вселенной.

Плотности в такую раннюю эпоху были настолько велики, а условия настолько экстремальны, что самые усовершенствованные физические теории, которые мы сегодня имеем, не могут дать нам проникновение в происходящее. По причинам, которые будут становиться все более ясными, высокоуспешные законы физики, разработанные в двадцатом столетии, не действуют больше при таких напряженных условиях, оставляя нас без руководства в нашем походе к пониманию начала времен. Мы коротко увидим, что недавние исследования обеспечивают дающий надежду свет маяка, но до сих пор мы понимаем неполноту наших знаний о том, что происходило в начале при приближении к размытому пятнышку далеко слева на космическом пространственно-временном батоне, – нашей версии terra incognita на картах прошлого. С этим последним замечанием мы представляем Рис. 8.10, как примерную иллюстрацию космической истории.

Альтернативные формы

Пока мы предполагали, что пространство имеет форму, подобную экрану видеоигры, но ситуация имеет много тех же самых особенностей и для других возможностей. Например, если данные в конце концов покажут, что форма пространства сферическая, то тогда по мере того, как мы движемся все дальше назад во времени, размер сферы становится все меньше, вселенная становится все горячее и плотнее, и при нулевом времени мы столкнемся с некоторой разновидностью начала типа Большого взрыва. Изображение иллюстрации, аналогичной Рис. 8.10, проблематично, поскольку сферы не сопоставимы четко одна с другой (вы можете, например, представить 'сферический батон', в котором каждое сечение является сферой, которая окружает предыдущую), но в стороне от графических трудностей физика почти совершенно та же. Случаи бесконечного плоского пространства и бесконечного седлообразного пространства также обладают многими одинаковыми особенностями вместе с двумя уже обсуждавшимися формами, но они отличаются в одном существенном смысле. Посмотрим на Рис. 8.11, на котором сечения представляют плоское пространство, которое бесконечно протяженно (конечно, мы можем показать только его часть). Когда вы наблюдаете все более ранние времена, пространство сжимается; галактики становятся все ближе и ближе друг к другу, чем дальше назад вы смотрите на Рис 8.11b. Однако общий размер пространства остается тем же самым. Почему? Ну, бесконечность забавная вещь. Если пространство бесконечно и вы сокращаете все расстояния на множитель два, размер пространства становится равным половине от бесконечности, что все еще равно бесконечности. Так что, хотя все вещи сближаются друг с другом и плотности становятся все выше, когда вы направляетесь все дальше назад во времени, общий размер вселенной остается бесконечным; вещи становятся более плотными везде на протяжении бесконечного пространства. Это дает весьма отличающийся образ Большого взрыва.

Обычно мы представляем вселенную, начинающуюся с точки, грубо как на Рис. 8.10, на котором нет внешнего пространства или времени. Тогда, при таком виде взрыва, пространство и время развертываются от их сжатой формы и расширяющаяся вселенная начинает полет. Но если вселенная пространственно бесконечна, уже имеется бесконечная пространственная протяженность в момент Большого взрыва. В этот начальный момент плотность энергии повышается и достигаются несравнимые ни с чем температуры, но эти экстремальные условия существуют везде, а не только в одной отдельной точке. В такой обстановке Большой взрыв не имел места в одной точке; напротив, Большой взрыв имел место везде на бесконечной протяженности. По сравнению с обычным точечным началом, это похоже на много Больших взрывов в каждой точке бесконечной пространственной протяженности. После Взрыва пространство раздувалось, но его общий размер не возрастал, поскольку нечто, уже бесконечное, не может стать еще больше. Что возрастало, так это расстояния между объектами вроде галактик (как только они сформировались), как вы можете видеть, посмотрев слева направо на Рис 8.11b. Наблюдатель вроде вас или меня, посмотрев наружу из одной галактики или из другой, увидит все окружающие галактики разбегающимися прочь, точно так же, как открыл Хаббл.

Имеем в виду, что этот пример бесконечного плоского пространства намного больше, чем чисто академический. Мы увидим, что имеются веские основания считать, что общая форма пространства не искривленная, а поскольку до сих пор нет оснований считать, что пространство имеет форму экрана видеоигры, плоская бесконечно большая пространственная форма является передовой областью споров для крупномасштабной структуры пространства-времени.

Рис 8.11 (а) Схематическое изображение бесконечного пространства, населенного галактиками, (b) Пространство сокращается во все более ранние времена, – так что галактики становятся ближе и более плотно упакованными в ранние времена, – но общий размер бесконечного пространства остается бесконечным. Наше неведение относительно того, что происходило в самые ранние времена обозначено размытым пятном, но здесь пятно распространено по всей бесконечной пространственной протяженности.

Космология и симметрия

Соображения симметрии явно были необходимыми в разработке современной космологической теории. Понятие времени, его применимость ко вселенной как целому, общая форма пространства и даже лежащая в основании схема ОТО – все они остаются на фундаменте симметрии. Даже в этих условиях, имеется еще и другой способ, в котором идеи симметрии наполняют эволюционирующий космос. В ходе его истории температура вселенной охватывала огромный диапазон от невыносимо горячих моментов сразу после Взрыва до нескольких градусов выше абсолютного нуля, которые мы находим сегодня, если вы поместите термометр в глубокое пространство. И, как я буду объяснять в следующей главе, вследствие критической взаимозависимости между теплом и симметрией то, что мы видим сегодня, является вероятным, но холодным остатком намного более богатой симметрии, которая формировала раннюю вселенную и предопределяла некоторые из самых привычных и существенных особенностей космоса.

9 Испаряя ваккум

ТЕПЛОТА, ПУСТОТА И ОБЪЕДИНЕНИЕ

В течение времени, составляющего около 95 процентов истории вселенной, космический корреспондент, интересующийся приблизительной, всеобъемлющей формой вселенной, сообщал бы более или менее одинаковый сюжет: вселенная продолжает расширяться. Материя продолжает рассеиваться вследствие расширения. Плотность вселенной продолжает уменьшаться. Температура продолжает падать. На самых больших масштабах вселенная сохраняет симметричный однородный вид. Но не всегда можно было так спокойно описывать космос. Самые ранние этапы требуют крайне беспокойных сообщений, поскольку в те начальные моменты вселенная испытывала быстрые изменения. И мы теперь знаем, что то, каким образом все тогда происходило, сыграло определяющую роль в том, что мы наблюдаем сегодня.

В этой главе мы сфокусируемся на критических моментах в первые доли секунды после Большого взрыва, когда, как мы верим, количество симметрии, заключенной во вселенной, неожиданно менялось, причем с каждым изменением запускались совершенно различные эпохи в космической истории. В то время

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату