Атомы, которые составляют вашу руку, и шар для боулинга, который вы можете поднять, все они сделаны из протонов, нейтронов и электронов. Протоны и нейтроны, как обнаружили экспериментаторы в конце 1960-х, каждый составлен из трех более мелких частиц, известных как кварки. Так что, когда вы махаете своей рукой туда и сюда, вы на самом деле размахиваете туда и сюда всеми составляющими кварками и электронами, что подводит нас к существу дела. Океан Хиггса, в который, как заявляет современная теория, мы все погружены, взаимодействует с кварками и электронами: он мешает их ускорениям почти так же, как чан с патокой сопротивляется движению шарика для пинг-понга, который туда опущен. И это сопротивление, это торможение мельчайших составляющих дает вклад в то, что вы ощущаете как массу вашей руки и шара для боулига, которыми вы размахиваете, или как массу объекта, который вы бросаете, или как массу всего вашего тела, когда вы ускоряетесь в направлении к финишной линии на 100-метровой дистанции. Именно так мы чувствуем океан Хиггса. Силы, которые мы прикладываем тысячи раз в день, чтобы изменить скорость того или иного объекта, – чтобы придать ему ускорение, – являются силами, которые борются против сопротивления океана Хиггса.[8]
Аналогия с патокой хорошо ухватывает некоторые аспекты Хиггсова океана. Чтобы ускорить шарик для пинг-понга, опущенный в патоку, вам нужно толкать его более сильно, чем когда вы играете с ним на теннисном столе, – он будет сопротивляться вашим попыткам изменить его скорость более сильно, чем он делает это вне патоки, так что он ведет себя так, как будто погружение в патоку увеличило его массу. Аналогично, в результате своих взаимодействий с вездесущим океаном Хиггса элементарные частицы сопротивляются попыткам изменить их скорость – они приобретают массу. Однако, аналогия с патокой имеет три вводящих в заблуждение особенности, о которых вы должны быть осведомлены.
Парвая особенность, вы можете всегда влезть в патоку, вытащить шарик для пинг-понга и посмотреть, как уменьшится его сопротивление ускорению. Это не верно для частиц. Мы уверены, что в настоящее время океан Хиггса заполняет все пространство, так что нет способа удалить частицы из-под его влияния; все частицы имеют массы независимо от того, где они находятся. Вторая особенность, патока сопротивляется любому движению, тогда как Хиггсово поле сопротивляется только ускоренному движению. В отличие от того, как шарик для пинг-понга движется через патоку, частица, двигаясь через внешнее пространство с постоянной скоростью, не будет замедляться за счет 'трения' с Хиггсовым океаном. Вместо этого ее движение будет продолжать оставаться неизменным. Только когда мы постараемся разогнать или затормозить частицу, Хиггсово поле проявит свое присутствие через силу, которую мы прикладываем. Третья особенность, когда это касается привычной материи, составленной из скоплений фундаментальных частиц, имеется другой важный источник массы. Кварки, составляющие протоны и нейтроны, удерживаются вместе сильным ядерным взаимодействием: глюоны (частицы-переносчики сильного взаимодействия) струятся между кварками, 'склеивая' их вместе. Эксперименты показывают, что эти глюоны имеют высокую энергию, а поскольку соотношение Эйнштейна Е = mc2 говорит нам, что энергия (Е) проявляет себя как масса (m), мы получаем, что глюоны внутри протонов и нейтронов дают существенный вклад в общую массу этих частиц. Так что более точная картина заключается в представлении о патокоподобной силе сопротивления Хиггсова океана, как о дающей массу фундаментальным частицам, таким как электроны и кварки, но когда эти частицы объединяются в составные частицы вроде протонов, нейтронов и атомов, вступают в игру и другие (хорошо понятные) источники массы.
Физики полагают, что степень сопротивления Хиггсова океана ускорению частицы меняется в зависимости от особых разновидностей частиц. Это существенно, поскольку все известные виды фундаментальных частиц имеют различные массы. Например, в то время как протоны и нейтроны составлены из двух типов кварков (именуемых верхним и нижним кварками: протон состоит из двух верхних (up) и одного нижнего (down); а нейтрон из двух нижних и одного верхнего), за годы экпериментаторы, используя атомные столкновения, открыли четыре других вида кварков, чьи массы охватывают широкий диапазон от 0,0047 до 189 масс протона. Физики уверены, что объяснение разнообразия масс заключается в том, что различные виды частиц взаимодействуют с океаном Хиггса более или менее сильно. Если частица двигается плавно через океан Хиггса с малым взаимодействием или без такового, то сопротивление будет мало или будет отсутствовать и частица будет иметь малую массу или не будет иметь массы. И наоборот, если частица существенно взаимодействует с океаном Хиггса, она будет иметь более высокую массу. Самый тяжелый кварк (именуемый вершинный (top) кварк) с массой около 350 000 масс электрона взаимодействует с Хиггсовым океаном в 350 000 раз сильнее электрона; он намного труднее ускоряется через океан Хиггса, и в этом причина, что он имеет большую массу. Если мы сравним массу частицы с известностью личности, то океан Хиггса будет подобен папарацци: те, кто неизвестен, проходят через толпящихся фотографов с легкостью, но видные политики и кинозвезды проталкиваются к своей цели с большим трудом.[9]
Это дает прекрасную основу для размышлений о том, почему одна частица имеет массу, отличную от другой, но на сегодняшний день нет фундаментальных объяснений для точного способа, которым каждый из известных видов частиц взаимодействует с океаном Хиггса. В результате нет фундаментального объяснения, почему известные частицы имеют индивидуальные массы, которые обнаруживаются экспериментально. Однако, большинство физиков уверено, что если бы не было Хиггсова океана, все фундаментальные частицы были бы подобны фотону и совсем не имели бы массы. Фактически, как мы теперь видим, вещи могли бы быть такими в ранние моменты вселенной.
Объединение в охлаждающейся вселенной
В то время, как газообразный пар конденсируется в жидкую воду при 100 градусах Цельсия, а жидкая вода замерзает в твердый лед при 0 градусов Цельсия, теоретические изыскания показали, что Хиггсово поле конденсируется в ненулевую величину при миллионе миллиардов (1015) градусов. Это почти в 100 миллионов раз превышает температуру в центре Солнца, и это температура, до которой, как мы уверены, вселенная остыла примерно к одной сотой миллиардной (10–11) доле секунды после Большого взрыва. Предшествующие 10–11 секунды после Большого взрыва Хиггсово поле флуктуировало вверх и вниз, но имело нулевую среднюю величину; как и вода выше 100 градусов Цельсия, при таких температурах океан Хиггса не мог быть сформирован, поскольку было слишком жарко. Океан испарился бы немедленно. А без Хиггсова океана не было сопротивления ускоренному движению, которому подвергнуты частицы (папарацци исчезли), что подразумевает, что все известные частицы (электроны, up- и down-кварки и остальные) имели одинаковую массу: нуль.
Это наблюдение частично объясняет, почему формирование океана Хтггса описывается как космологический фазовый переход. В фазовых переходах от пара к воде и от воды ко льду происходят две существенные вещи. Имеется существенное качественное изменение во внешнем виде объекта, и фазовый переход сопровождается уменьшением симметрии. Мы видим те же две особенности при формировании Хиггсова океана. Первое, произошло существенное качественное изменение: виды частиц, которые были безмассовыми, внезапно приобрели ненулевые массы – массы, которые эти виды частиц имеют и сейчас. Второе, это изменение сопровождалось уменьшением симметрии: до формирования Хиггсова океана все частицы имели одинаковую – нулевую – массу, что является высокосимметричным состоянием дел. Если бы вы поменяли массу одного вида частиц на массу другого, никто бы не узнал, поскольку все массы были одинаковыми. Но после конденсации океана Хиггса массы частиц превратились в ненулевые – и не равные – величины, так что симметрия между массами была потеряна.
Фактически, уменьшение симметрии, возникнув из формирования океана Хиггса, является еще более всеобъемлющим. Выше 1015 градусов, когда Хиггсово поле еще не сконденсировалось, безмассовыми являются не только все виды фундаментальных частиц материи, то также, без тормозящего сопротивления от океана Хиггса, и все виды частиц сил. (Сегодня W и Z частицы – переносчики слабого ядерного взаимодействия – имеют массы около 86 и 97 масс протона). И, как впервые было открыто в 1960е Шелдоном Глэшоу, Стивеном Вайнбергом и Абдусом Саламом, безмассовость частиц всех сил сопровождалась другой, фантастически красивой симметрией.
В конце 1800х Максвелл осознал, что электричество и магнетизм, хотя они некогда воспринимались как две полностью различные силы, на самом деле являются различными аспектами одной и той же силы – электромагнитной силы (см. Главу 3). Его труд показал, что электричество и магнетизм дополняют друг друга; они представляют собой Инь и Янь более симметричного объединенного целого. Глэшоу, Салам и