футбольных поля размером, заполненный водородом немецкий дирижабль «Гинденбург». Катастрофа унесла жизни 36 человек, и на таком использовании водорода был поставлен крест. С тех пор аэростаты заправляют исключительно гелием. Гелий – газ, увы, более плотный, но зато негорючий.

Погремушка

В 1944 году американские военные попытались использовать его в качестве ракетного топлива. Помешала делу высокая взрывоопасность газа: стоило совсем немного отклониться от нормальной работы двигателей или допустить малейшую протечку, и мирный водород мигом превращался в зловещий «гремучий газ». В результате ракеты не долетали до цели, взрываясь прямо на старте. По той же причине американцам не удалось в 50-е годы прошлого века построить водородный самолет, а в 70-е, во времена нефтяного кризиса, – водородный эсминец.

В этом смысле дела в СССР, основном тогдашнем конкуренте Штатов в области водородной энергетики, были более успешны. Советские ученые решили добывать из водорода энергию в виде электричества, напрямую окисляя его в водной среде, а не поджигая в смеси с кислородом. Для этого они использовали топливные элементы, в которых водород на специальной ионообменной мембране соединялся с кислородом, в результате чего получались вода и электричество. Технология оказалась настолько удобной, что сейчас без участия топливных элементов не проходит ни одна серьезная космическая экспедиция.

Немного позже ученые все же придумали, как использовать водород в качестве именно горючего и при этом не взорваться. В газ стали добавлять специальные присадки-ингибиторы (химические «тормоза»). Например, пропилен. Всего один процент этого дешевого газа – и водород из грозного оружия превращается в безопасный газ. В результате уже в 1979 году компания BMW выпустила первый автомобиль, вполне успешно ездивший на водороде, при этом не взрывавшийся и выпускавший из выхлопной трубы водяной пар. В эпоху усиливающейся борьбы с вредными выхлопами машина была воспринята как вызов консервативному автомобильному рынку. Вслед за BMW в экологическую сторону потянулись и другие производители. К концу века каждая уважающая себя автокомпания имела в запаснике хотя бы один концепт-кар, работающий на водородном топливе.

Если BMW и Mazda пока чередуют два вида топлива, некоторые научились их совмещать. По дорогам США уже ездит множество седельных тягачей, в дизельных сердцах которых пылает соляро-водородная смесь. В результате мощность двигателя вместе с чистотой выхлопа растут, а расход топлива снижается на 10%. Оборудованную системой HFI (Hydrogen Fuel Injection – водородный топливный впрыск) машину не надо даже заправлять этим газом, достаточно залить в небольшой бачок несколько литров воды. Система сама проведет электролиз, соберет водород и направит его в камеру сгорания. Эффект заключается в том, что в смеси с водородом солярка сгорает значительно эффективнее.

А больше всех новым топливом заинтересовались японцы. И это понятно. Эта страна, практически лишенная хоть каких-нибудь природных запасов нефти и газа, обладает неограниченными объемами сырья для водорода (в виде океанской воды) и поистине завидной сообразительностью населения. А поэтому здесь водородные аналоги есть практически у любого вида техники – от работающего на топливных элементах локомотива до человекоподобного робота SpeecysFC. К тому же японцы вовсю ведут разработки топливных элементов для ноутбуков и мобильных телефонов. Компания NEC еще в 2001 году создала первый рабочий прототип мобильного топливного элемента PEFC. «Батарейка» выдает «на-гора» в 10 раз больше энергии, чем стандартный литиево-ионный аккумулятор. Правда, заряжается она метанолом: в специальной камере под действием катализаторов и температуры (85 градусов по Цельсию) из него извлекается водород, который и «допускается» к энергопроизводящей мембране. Такая система работы связана с тем, что хранить водород не так-то просто.

Так выглядит 3d орбиталь в атоме водорода. Согласно квантовой механике у электрона нет четкой траектории движения, и орбиталь – это та область пространства, где его пребывание наиболее вероятно

Камеры хранения

Сейчас водородное топливо сберегают тремя способами: в сжатом виде, в сжиженном и в металлогидридах. Самое простое, конечно, – закачать водород в бак мощным компрессором. В баках той же Mazda водородное топливо содержится под давлением 350 атмосфер. Но способ этот, будучи самым дешевым, и самый небезопасный. При таком высоком давлении любая слабинка в системе грозит протечкой газа. А где протечка, там пожар, а то и взрыв.

Более надежный и практичный способ – держать водород в жидком виде. Но для этого его нужно охладить до -253 градусов Цельсия. В BMW топливо хранится именно в таком виде: поэтому почти половину топливной системы занимает мощнейшая теплоизоляция. И все равно, стоит оставить машину на стоянке, скажем, на недельку, и она встретит вернувшегося хозяина с пустыми баками. Никакая изоляция не может полностью защитить систему от нагрева. В результате водород начинает испаряться, давление в баке растет, и газ просто стравливается в атмосферу через предохранительный клапан. По техническим условиям полная заправка испаряется всего за три дня…

Самый перспективный способ – хранение в металлогидридных композициях. Водород, оказывается, очень хорошо растворяется металлами, как вода впитывается губкой. Причем он поглощается в огромных объемах, значительно превосходящих объемы «губки». Такие «напитанные» водородом металлы называются металлогидридами. При охлаждении они вбирают водород, при нагревании – активно его отдают. В прошлом году специалисты из американской Тихоокеанской северо-западной национальной лаборатории создали материал на основе борана аммиака, способный впитывать и отдавать уже при 80 градусах водород со скоростью, в сто раз превышающей те, что были доступны раньше. А Танер Иилдирим из американского Национального института стандартов и технологий вместе с Салимом Сайраки из турецкого университета Билкента разработали материал, способный впитывать газообразный водород в количестве до 9 000 литров на 10-килограммовый элемент! Это особый кристаллический нанокомплекс, состоящий из микроскопических, инкрустированных снаружи титаном, углеродных нанотрубок, каждая из которых в 5 000 раз тоньше человеческого волоса. Изготовить такой углеродно-титановый «накопитель» человек уже может, но стоит он слишком дорого. Пока. Однако заметим, что и персональный компьютер еще совсем не так давно стоил, как хороший автомобиль.

Казалось бы, человечество уже готово перепрыгнуть в водородную эпоху. Новое топливо устраивает и ученых, и экологов, и предпринимателей, и политиков, и простых людей. И перейти на него мешает всего одна проблема. Пока что совсем не понятно, где этот водород брать.

Как стать новым кувейтом

Получение водорода электролизом – малоперспективно. Ведь для того чтобы разложить воду на составляющие, нужно электричество, а его производят… правильно, сжигая в основном ту же нефть. Запасы природного газа, из которого можно выделять водород температурным разложением, тоже не бесконечны.

Экологи предлагают для производства водорода использовать только чистую энергию ветра и солнца, однако все эти прожекты не слишком реалистичны. Английские специалисты посчитали, что для того, чтобы перевести весь автотранспорт острова на такой «чистый» Н2, надо будет застроить несколькими рядами ветряков всю береговую полосу страны. С солнечной энергией тоже не совсем получается: фотоэлементы очень дороги, а при их производстве вредных отходов получается столько, что уж лучше нефть жечь. Строго говоря, самые популярные сейчас полупроводниковые солнечные батареи дороги прежде всего потому, что для выплавки, очистки и обработки кремния, из которого их делают, нужно больше энергии, чем они способны выработать в течение всего своего срока службы. Остается «мирный атом», но для того, чтобы произвести из воды необходимое английским автолюбителям количество водорода, на острове нужно построить более 100 новых АЭС – не самое привлекательное решение, если оценить размер необходимых инвестиций и проблему с утилизацией или захоронением отходов.

Ученые и изобретатели пытаются обойти проблему, выводя специальные породы бактерий, вырабатывающих водород, и покрывая крыши гаражей особыми солнечными элементами, в которых вода разлагается на водород и кислород без промежуточной электрической стадии. Химики из британского Университета Лидса предлагают даже извлекать водород из подсолнечного масла. Но очевидно, что все это – лишь временные решения.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату