подвешены выше часовых механизмов. Поэтому вилка каждого спускового механизма была направлена вертикально вверх и сцеплялась с маятником ниже его линзы.

Несмотря на эти интересные новшества, качественно новые часы не отличались сколько-нибудь значительно от длинно-футлярных часов времен Флемстида. Механизмы часов и маятники в обсерватории не были защищены надлежащим образом от пыли, механических сотрясений и т.д. и не были термоком - пенсированы [1]. Поскольку преимущества часов с такими длинными маятниками так и. не были выявлены, впоследствии для всех эталонных часов гринвичской обсерватории стали применять маятники длиной 39,14 дюйм (99,2 см). Это привело к уменьшению периода колебаний до одной секунды, вследствие чего секундная стрелка стала передвигаться односе-кундными скачками, и, кроме того, дало возможность астрономам при проведении наблюдений воспринимать каждую секунду на слух.

Покоящийся спусковой механизм и ртутный маятник

Второй королевский астроном Эдмунд Галлей заказал три экземпляра часов известному инструментальному и часовому мастеру Джорджу Грэхему, работавшему вместе с Томпионом и внесшему большой вклад в дело изготовления астрономических часов. Первые часы, сконструированные примерно в 1720 г., имели спусковой механизм, подобный возвратному, но в отличие от последнего маятник здесь не воздействовал на спусковое колесо, способствуя его возврату. Это устройство получило название покоящегося спускового механизма. Последовавшее вскоре второе изобретение относилось к разработке способа компенсации влияний температурных изменений на длину маятника и достигалось применением в качестве груза маятника сосуда, наполненного ртутью. Часы со спусковым механизмом Грэхема и ртутным маятником, получившие название регуляторов, использовались в обсерваториях всего мира на протяжении свыше 150 лет.

Импульсы передавались паллетам концами зубьев спускового колеса. Стороны паллет, концентричные паллетной оси, имели плоскости покоя, против которых зубья колеса останавливались в промежутках между импульсами, в то время когда маятник совершал дополнительное отклонение. Дополнительное отклонение - это добавочное колебание маятника после того, как он уже отклонился на угол, больший, чем требовалось для того, чтобы паллеты получили импульс и колесо повернулось.

С уменьшением влияния спускового механизма на маятник уменьшилась и ошибка. Грэхем приступил к выяснению влияния изменений температуры на ход часов. Часы, имеющие маятник с обычным железным или стальным стержнем, будут отставать с увеличением температуры (так как стержень при этом удлиняется) и спешить при понижении температуры (когда стержень укорачивается). Величина ошибки, обусловленной таким изменением длины стального стержня, при отклонении температуры на ГС составляет около 0,5 с в сутки, поэтому разность хода часов в зимнее и летнее время может достигать 4 с в сутки. Для разрешения этой проблемы Грэхему необходимо было добиться, чтобы расстояние от точки подвеса маятника до его центра колебания (точка, в которой добавление или уменьшение массы не влияет на период колебаний маятника), находящегося около центра груза, сохранялось постоянным при изменении температуры. Экспериментируя с различными металлическими стержнями и пытаясь использовать свойство различных металлов расширяться по-разному, Грэхем в конце концов изготовил ртутный маятник, где удлинение и укорочение стержня компенсировалось подъемом или опусканием ртути, налитой в стеклянный сосуд, который и служил грузом маятника.

Решетчатый маятник Джона Гаррисона

Весьма удивительно, что ни один из четырех регуляторов, изготовленных Грэхемом для Гринвичской обсерватории, не имел ртутного маятника. Первые три экземпляра часов, поступившие в обсерваторию в период 1721-1725 гг., как было написано, имели «простые маятники» (с деревянными или стальными стержнями). Гаррисон произвел компенсацию маятника примерно в 1728 г., Грэхем в то же время заменил в двух ранних регуляторах простые маятники на решетчатые. Уже в 1750 г. четверо часов, доставленных в обсерваторию, имели решетчатые маятники.

Опытным путем Гаррисон обнаружил, что латунь расширяется под действием температуры в полтора раза больше, чем сталь, поэтому для получения хорошей компенсации секундного маятника, длины латунных стержней должны равняться приблизительно 9 фут (~2,7 м), а стальных - 6 фут (~1,8 м). Гаррисон сумел разрешить проблему, связанную с чрезвычайно большой длиной стержней, закрепляя их так, как показано на рис. 72 (здесь стрелки указывают направление расширения стержней при повышении температуры). Закрепление стержней поперечными полосками было произведено таким образом, что все стальные стержни расширялись книзу, а латунные - кверху, вследствие чего результирующий эффект выразился в том, что линза маятника поддерживалась на неизменном расстоянии от точки подвеса.

Дальнейшие усовершенствования

В 1773 г. пятый королевский астроном Маскелайн приобрел два регулятора с покоящимися спусковыми механизмами у изготовителя хронометров Джона Арнольда. Эти часы имели решетчатые маятники, причем маятник одних часов традиционно состоял из девяти стержней, а вторых - только из пяти, что достигалось заменой двух латунных стержней на цинковые, расширяющихся книзу, остальные же три стержня были изготовлены из стали. Чтобы уменьшить общую длину стержней, Арнольд воспользовался тем, что цинк имеет больший коэффициент расширения, чем сталь.

Арнольд участвовал и в усовершенствовании более ранних регуляторов Грэхема, где для уменьшения трения и износа он применил паллеты с драгоценными камнями. Рубиновые камни, заключенные в стальную паллетную оправу, служили плоскостями импульса и покоя. Таким образом, регулятор Арнольда в прямом смысле этого слова стал драгоценным. Это начинание в дальнейшем нашло большое применение в практике изготовления высокоточных регуляторов с драгоценными камнями в качестве опор спускового колеса и паллет.

Электрические хранители времени

Значительных успехов в деле хранения времени в годы, когда на посту директора Гринвичской обсерватории был Джон Понд, достигнуто не было; но именно тогда был введен первый общественный сигнал времени в виде сигнального шара, смонтированного в 1833 г. на верхушке восточной башни обсерватории. Поначалу шар приводился в действие вручную оператором, имеющим достаточно точные часы, но с 1852 г. шар стал падать автоматически под действием сигнала от электрических часов Чарльза Шеперда. Эри, ставший преемником Понда на посту директора Гринвичской обсерватории, увидел потенциальные возможности часов Шеперда в свете возрастающей роли телеграфной связи и сделал эти электрические часы сердцем своей системы распространения времени (см. гл. 3). В регуляторе Шеперда (он до сих пор находится в рабочем состоянии) применялся соответствующий секундный маятник с ртутной компенсацией, движение которого поддерживалось при помощи рычага с небольшим весом, называемого рычагом тяжести. На рис. 73 приведена схема электромагнитного устройства. В тот момент, когда маятник отклоняется влево, он приподнимает защелку (а), которая, вращаясь, освобождает рычаг тяжести (Ь), при падении толкающий маятник вправо. Таким образом маятник получает толчок только в одном направлении, а импульс, определяемый силой тяжести рычага, всегда одинаков. В максимуме своего отклонения вправо маятник замыкает контакт (С) и приводит в действие электромагнит (D), который притягивает якорь (с), при этом конец якоря поднимается и подталкивает рычаг (b) вверх до его захвата защелкой (а). Так завершается один рабочий цикл.

Маятник поочередно соприкасается с контактами А и В, благодаря чему через катушки Е и F проходит ток. Часы Шеперда работают по принципу, обратному по сравнению с гиревыми механизмами. В этих часах паллеты поворачивают спусковое колесо, приводящее в действие часы, тогда как в гиревых устройствах спуск приводится в действие часовым механизмом. В первоначальной конструкции регулятора Шеперда полярность катушек Е и F изменялась при каждом отклонении маятника, поэтому стержневой магнит, связанный с осью паллет, притягивался к одной катушке и отталкивался от другой.

Электрические часы в те времена, когда Шеперд предоставил свой регулятор Гринвичской обсерватории, еще только зарождались; способ замыкания контактов, предложенный Шепердом, препятствовал свободному качанию маятника, но секундные импульсы, выдаваемые такими часами, можно было использовать для приведения в действие вспомогательных, или вторичных, часов (см. далее рис. 75), расположенных на значительном расстоянии от обсерватории.

Регулятор Дента

В 1871 г. Гринвичская обсерватория лонные часы, идущие по звездному Дентом, в тесном сотрудничестве с Этот замечательный регулятор «Дент устройство, сконструированное самим щимся

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату