Иными словами, если стержень сечением 2 см2 разрывается при нагрузке 1000 кгс, то стержень сечением 4 см2 разрывается при нагрузке 2000 кгс. Кажется почти невероятным, что потребовалось почти два столетия, чтобы разделить разрушающую нагрузку на площадь поверхности в месте разрыва, дабы получить величину, называемую сегодня разрушающим напряжением (в упомянутом выше случае 500 кгс/см2) и относящуюся ко всем стержням из того же материала.

Коши осознал, что такое представление о напряжении можно использовать не только для того, чтобы предсказать разрушение материала, но и для более общего описания состояния тела в любой его точке. Другими словами, напряжение в твердом теле напоминает давление в жидкости или газе. Оно является мерой воздействия внешних сил на атомы и молекулы, из которых состоит материал и которые вынуждены под действием этих сил сближаться или удаляться друг от друга.

Таким образом, сказать, что напряжение в данной точке какого-то куска стали составляет 500 кгс/см2, ничуть не более вразумительно и не менее таинственно, чем сказать, что давление в шинах моего автомобиля 2 кгс/см2. Однако, хотя понятия о давлении и напряжении вполне сопоставимы, нужно иметь в виду, что давление действует в любом направлении внутри жидкости, тогда как напряжение является величиной, характеризующейся определенными направлениями действия. Напряжение может, в частности, действовать в одном-единственном направлении; во всяком случае, пока мы будем считать, что это именно так.

В количественном выражении напряжение в заданной точке определяется отношением силы, или нагрузки, приходящейся на небольшую площадку в окрестности этой точки, к величине этой площадки[5].

Если напряжение в некоторой точке мы обозначим буквой s, то напряжение = s = (нагрузка/площадь) = (Р/А), где Р - нагрузка, а А - площадь, на которую, как можно считать, эта нагрузка действует (рис. 6).

Рис. 6. Напряжение, возникающее в бруске при растяжении. (Ситуация при сжатии выглядит аналогичным образом.)

Вернемся теперь к нашему кирпичу, который в предыдущей главе мы оставили висящим на веревке. Если кирпич весит 5 кг, а веревка имеет сечение 2 мм2, то кирпич натягивает веревку с силой 5 кгс, а напряжение в веревке s = (нагрузка/площадь) = (Р/A) = 5 кгс/2 мм2 = 2,5 кгс/мм2, или, если угодно, 250 кгс/см2.

Единицы напряжения

В связи со сказанным возникает порой вызывающий досаду вопрос о единицах напряжения. Напряжение можно выразить, и часто его именно так и выражают, в различных величинах, соответствующих какой-либо единице силы, деленной на какую-либо единицу площади. Чтобы не было путаницы, в этой книге мы ограничимся использованием следующих единиц.

Меганьютон на квадратный метр - МН/м2. Это единица СИ - Международной системы единиц, которая в качестве единицы силы использует Ньютон - Н.

1Н = 0,102 кгс (приблизительно весу одного яблока).

1 МН (меганьютон)=1 млн. Н, что составляет почти 100 т.

Килограмм силы на квадратный сантиметр - кгс/см2

Перевод одних единиц в другие:

1 MH/м2= 10,2 кгс/см2, 1 кгс/см2=0,098 МН/м2.

Таким образом, полученное в нашей веревке напряжение составляет 250 кгс/см2 или 24,5 МН/м2. Обычно для приближенного вычисления напряжений нет необходимости и в абсолютно точных коэффициентах перевода одних единиц в другие.

Стоит повторить: важно осознать, что напряжение в материале, подобно давлению в жидкости, есть величина, привязанная к некоторой точке; оно не относится к какой-либо определенной площади поперечного сечения, такой, как квадратный сантиметр или квадратный метр.

Деформация

В то время как напряжение говорит нам о том, сколь интенсивно принуждаются к расхождению в данной точке твердого тела атомы, деформация говорит о том, сколь далеко этот процесс растяжения зашел, то есть каково относительное растяжение межатомных связей,

Так, если стержень, имевший первоначально длину L, под действием силы удлинился на величину l, то деформация, или относительное изменение длины стержня, которую обозначим буквой е, будет e = l/L(рис. 7)

Рис. 7. Деформация, возникающая в бруске при растяжении. (Деформация при сжатии выглядит аналогичным образом.)

Возвращаясь к нашей веревке, можно сказать, что если ее первоначальная длина была, допустим, 2 м (200 см), а под действием веса кирпича она удлинилась на 1 см, то деформация веревки е = l/L= 0,005, или 0,5%.

Деформации, возникающие в инженерной практике, обычно весьма малы, поэтому инженеры, как правило, выражают их в процентах, что уменьшает вероятность ошибки, если оперировать десятичными дробями с множеством нулей.

Подобно напряжению, деформация не связана с какой-либо опеределенной длиной, сечением или формой материала. Она также характеризует состояние материала в точке. Поскольку для определения деформации мы делим удлинение на первоначальную длину, она выражается безразмерной величиной - числом,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату