Несмотря на то что Гук ничего не знал в деталях о химических связях и не очень-то многое знал об атомах и молекулах, он хорошо понимал, что в тонкой структуре вещества происходит нечто подобное, и вознамерился установить, в чем состоит природа макроскопической связи между силами и смещениями в твердых телах. Он проделал множество опытов с самыми разными, предметами из самых разных материалов различной геометрической формы. Здесь были и пружины, и куски проволоки, и балки. Последовательно подвешивая на них грузы и измеряя возникающие смещения, Гук показал, что в любой конструкции смещение обычно пропорционально нагрузке. Так, нагрузка в 100 кгс вызывает смещение, вдвое больше, чем нагрузка в 50 кгс, и т. д.
Кроме того, в пределах возможной для измерений Гука точности, которая не могла быть очень высокой, большинство твердых тел после снятия нагрузки, вызывавшей смещения, восстанавливало свою первоначальную форму. Многократно нагружая и разгружая такого типа конструкции, он установил, что после снятия нагрузок остаточных изменений их формы не происходит. Такое поведение называется упругим и является совершенно обычным. Слово 'упругий' нередко ассоциируется с бельевой резинкой или изделиями из эластика, но в равной мере оно применимо и к стали, камню и кирпичу, к веществам биологического происхождения, таким, как дерево, кость или сухожилие. Именно в этом более широком смысле его обычно и употребляют инженеры. Между прочим, комариный писк порождает высокая упругость 'пружинок', управляющих крылышками комара.
В то же время форма некоторых твердых и 'почти твердых' тел, таких, как замазка, пластилин, полностью не восстанавливается, они остаются деформированными и после снятия нагрузки. Такое поведение называется пластическим. Этот термин относится не только к материалам вроде тех, которые идут на изготовление пепельниц, но также и к глине, к мягким металлам. Свойствами пластичности обладают, например, и сливочное масло, и овсяная каша, и патока. Многие из тех материалов, которые Гук считал 'упругими', при более точных современных методах исследования таковыми не оказываются. но все же как широкое обобщение выводы Гука остаются справедливыми, именно они легли в основу современной теории упругости. Мысль о том, что большая часть материалов и конструкций - не только детали механизмов, мосты и здания, но также и деревья, животные, горы и скалы и 'все сущее' вокруг - ведет себя подобно упругим пружинам, сегодня может показаться довольно простой и, возможно, вполне очевидной, однако, как видно из дневников Гука, такой прыжок по пути к истине стоил ему больших умственных усилий и многих сомнений. Возможно, это один из самых больших подвигов мысли в истории.
Обсудив свои идеи с сэром Кристофером Реном[3] в нескольких частных беседах, Гук в 1679 г. опубликовал результаты своих экспериментов. Статья называлась 'Сила сопротивления, или упругость'. Именно в ней впервые прозвучало знаменитое утверждение
Как теория упругости застыла на месте
Но стать врагом Ньютона было роковым шагом:
ведь Ньютон был непримирим независимо от своей правоты.
Закон Гука сослужил инженерам очень большую службу, хотя в той форме, в которой Гук выдвинул его первоначально, практической пользы от него было не так уж много. Гук фактически говорил о перемещениях законченной конструкции - пружины, моста или дерева, - когда к ней приложена нагрузка.
Если мы задумаемся на мгновение, то поймем, что величины смещений зависят от двух факторов - от размеpa и геометрической формы конструкции и от материала, из которого конструкция сделана. Материал от материала очень сильно отличается присущей ему жесткостью. Такие материалы, как резина или мягкие животные ткани, деформируются под действием столь малых сил, как нажатие пальцем. В то же время жесткость дерева, кости, камня, большинства металлов гораздо выше, и хотя абсолютно 'твердых' материалов в природе не существует, некоторые твердые тела, подобные сапфиру н алмазу, являются весьма жесткими.
Пусть два предмета, например два обычных промывочных ерша одной и той же формы и размера, сделаны из стали и резины. Очевидно, что стальной ерш будет гораздо (примерно в 30 000 раз) более жестким, чем резиновый. С другой стороны, если мы из одного и того же материала, например стали, сделаем тонкую спиральную пружину и толстую массивную балку, то пружина, естественно, будет намного более гибкой, чем балка. Упомянутые два фактора, определяющие жесткость конструкции, необходимо уметь отличать друг от друга и оценивать вклад каждого, поскольку в инженерном деле, как и в биологии, мы постоянно имеем дело с изменениями обоих факторов.
Достойно удивления, что после столь многообещающего старта на протяжении 120 лет после смерти Гука наука так и не нашла путей, чтобы справиться с этой проблемой. В действительности XVIII столетие на удивление мало продвинуло изучение упругости. Причин на это, несомненно, было много, но в общем можно сказать, что если ученые XVII в. рассматривали свою науку в тесной связи с прогрессом техники - такое понимание целей науки для того времени было почти откровением,- то большинство ученых XVIII в. считали ниже достоинства мыслителя задачи промышленности и торговли. Это был явный возврат к прошлому, к древнегреческому взгляду на науку. Закон же Гука уже давал общее философское объяснение довольно широкому кругу явлений, - объяснение, вполне достаточное с точки зрения джентльмена-философа, не очень интересующегося техническими деталями.
И тут мы не можем обойти молчанием такое обстоятельство, как влияние личности Ньютона (1643-1727), и не сказать о последствиях жестокой вражды, существовавшей между Ньютоном и Гуком. Гук, вероятно, был не менее талантлив, чем Ньютон, и, определенно, более обидчив и тщеславен, чем он, но в остальных