его величину — нуль, — а также скорость изменения его величины — тоже нуль. Но в соответствии с принципом неопределённости невозможно, чтобы оба эти свойства одновременно были определены. То есть, если поле в некоторый момент имеет определённую величину, нуль в нашем случае, принцип неопределённости говорит нам, что скорость его изменения совершенно случайна. А случайная скорость изменения означает, что в последующие моменты времени величина поля будет хаотически прыгать вверх и вниз, даже в месте, которое мы обычно полагаем совершенно пустым пространством. Так что интуитивное понятие пустоты как места, в котором все поля имеют и сохраняют нулевую величину, несовместимо с квантовой механикой. Величина поля может колебаться около нулевой величины, но она не может быть равной нулю во всей области более чем краткое мгновение.{155} На техническом языке физики говорят, что поля подвержены вакуумным флуктуациям.

Хаотичная природа вакуумных флуктуаций поля означает, что во всех областях, за исключением самых микроскопических, имеется так же много скачков «вверх», как и «вниз», а потому они усредняются к нулю, примерно как поверхность мрамора выглядит совершенно гладкой для невооружённого глаза, хотя электронный микроскоп обнаруживает, что она очень неровная на микроскопических масштабах. Тем не менее, хотя мы не можем увидеть эту квантовую дрожь непосредственно, более чем полстолетия назад реальность колебаний квантового поля, даже в пустом пространстве, была с несомненностью показана в простом, но фундаментальном открытии.

В 1948 г. датский физик Хендрик Казимир показал, как вакуумные флуктуации электромагнитного поля могут быть обнаружены экспериментально. Квантовая теория говорит, что колебания электромагнитного поля в пустом пространстве будут иметь различную форму, как проиллюстрировано на рис. 12.1а. Прорыв Казимира заключался в осознании того, что, разместив две обычные металлические пластины в пустой области, как показано на рис. 12.1б, можно вызвать небольшую модификацию этих вакуумных колебаний поля. А именно, квантовые уравнения показывают, что в области между пластинами некоторые типы флуктуаций будут отсутствовать (допустимы только такие флуктуации электромагнитного поля, значения которых равны нулю в месте расположения каждой пластины). Казимир проанализировал следствия такого подавления колебаний поля и обнаружил нечто совершенно необычное. Как уменьшение количества воздуха в некоторой области создаёт дисбаланс давлений (например, на большой высоте вы можете почувствовать разрежение воздуха по тому, как он оказывает меньшее давление с наружной стороны ваших барабанных перепонок), уменьшение квантовых колебаний поля между пластинами также создаёт дисбаланс давления: квантовые колебания поля между пластинами становятся чуть-чуть слабее, чем вне пластин, и этот дисбаланс толкает пластины друг к другу.

Рис. 12.1. (а) Вакуумные флуктуации электромагнитного поля. (б) Вакуумные флуктуации между двумя металлическими пластинами и они же вне пластин

Подумайте о том, насколько это странно. Вы помещаете две плоские, самые обыкновенные, незаряжённые металлические пластины в пустую область пространства, друг против друга. Когда их масса мала, гравитационное притяжение между ними настолько мало, что может быть полностью проигнорировано. Поскольку вокруг нет ничего другого, вы естественно решите, что пластины останутся неподвижными. Но расчёты Казимира показали, что произойдёт не это. Казимир пришёл к заключению, что призрачная хватка квантовых вакуумных флуктуаций будет мягко вынуждать пластины к встречному движению.

Когда Казимир впервые объявил об этом теоретическом результате, для проверки его предсказания не существовало достаточно чувствительного оборудования. Однако в течение последующего десятилетия другой датский физик Маркус Спаарней оказался в состоянии провести первые простейшие эксперименты по проверке силы Казимира, и с тех пор проводились всё более точные эксперименты. Например, в 1997 г. Стив Ламоро, тогда работавший в университете Вашингтона, подтвердил предсказания Казимира с точностью 5%.{156} (Для пластин, имеющих размер примерно с игральную карту и расположенных на расстоянии одной десятитысячной сантиметра друг от друга, сила между ними оказалась примерно равной весу одной капли росы; это показывает, насколько сложно измерить силу Казимира.) Теперь мало кто сомневается, что интуитивное представление о пустом пространстве как о статической, спокойной, лишённой событий арене совершенно не имеет оснований. Из-за квантовой неопределённости пустое пространство переполнено квантовой активностью.

Это заставило учёных значительную часть XX в. разрабатывать математику для описания такой квантовой активности как электромагнитных, так и сильных и слабых ядерных сил. Усилия даром не пропали: расчёты с использованием этой математической схемы согласуются с экспериментальными результатами с беспримерной точностью (например, расчёты влияния вакуумных флуктуаций на магнитные свойства электронов согласуются с экспериментальными результатами с точностью до одной миллиардной).{157}

Однако несмотря на все эти успехи в течение многих десятилетий физики понимали, что квантовые флуктуации приводят к большим трудностям в законах физики.

Давайте посмотрим, почему.

Проблемы с квантовыми флуктуациями{158}

До настоящего времени мы обсуждали только квантовые флуктуации полей, которые существуют внутри пространства. А как насчёт квантовых флуктуаций самого пространства? Хотя это может звучать странно, на самом деле это просто другой пример флуктуаций квантовых полей, который, однако, оказывается особенно трудным. В общей теории относительности Эйнштейн установил, что гравитация может быть описана как деформация и искривление ткани пространства; он показал, что гравитационные поля проявляются через форму геометрии пространства (или, в более общем виде, пространства-времени). Поэтому, точно так, как и любое другое поле, гравитационное поле подвергается квантовым флуктуациям: из принципа неопределённости следует, что на очень маленьких масштабах расстояний гравитационное поле непрерывно хаотически меняется. А поскольку гравитационное поле есть синоним формы пространства, такие квантовые флуктуации означают, что хаотично колеблется форма пространства. Снова, как и во всех других примерах квантовой неопределённости, на масштабах наших повседневных расстояний флуктуации слишком малы, чтобы ощущаться непосредственно, и окружающая среда выглядит гладкой, спокойной и предсказуемой. Но чем меньше масштаб наблюдения, тем больше неопределённость и тем более неистовыми становятся квантовые флуктуации.

Это проиллюстрировано на рис. 12.2, на котором мы показываем ткань пространства с всё бо?льшим увеличением, чтобы обнаружить её структуру при всё более мелких расстояниях. На самом нижнем уровне на рисунке показаны квантовые возмущения пространства на привычных масштабах и, как вы можете видеть, тут нечего смотреть — неровности настолько малы, что ненаблюдаемы, так что пространство выглядит невозмутимым и плоским. Но когда мы проникаем глубже, последовательно усиливая увеличение, мы видим, что неровности пространства становятся всё более заметными. На самом верхнем уровне, на рисунке, который показывает ткань пространства на масштабах меньше планковской длины — миллионной от миллиардной от миллиардной от миллиардной доли сантиметра (10?33 см) — пространство становится бурлящим, кипящим котлом бешеных флуктуаций. Как поясняет иллюстрация, обычные понятия влево/вправо, назад/вперёд и вверх/вниз становятся настолько перемешанными ультрамикроскопической суматохой, что они теряют всякий смысл. Даже обычное понятие до/после, которое мы иллюстрировали последовательными сечениями блока пространства-времени, из-за квантовых флуктуаций становится

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату