бессмысленным на временных масштабах меньше планковского времени, около десятой от миллионной от триллионной от триллионной от триллионной доли секунды (10?43 с — планковское время, равное времени, которое необходимо свету, чтобы пройти планковскую длину). Подобно размытой фотографии, интенсивные скачки на рис. 12.2 делают невозможным однозначно отделить один временной срез от другого, когда интервал времени между ними становится короче планковского времени. В итоге, на масштабах более мелких, чем планковская длина и планковское время, квантовая неопределённость делает ткань космоса настолько перекрученной и искажённой, что обычные концепции пространства и времени более неприменимы.

Рис. 12.2. Последовательное усиление увеличения при исследовании пространства обнаруживает, что при масштабах ниже планковской длины пространство становится неузнаваемо бурным и запутанным вследствие квантовых флуктуаций (здесь представлены воображаемые увеличительные стёкла, каждое из которых даёт увеличение где-то между 10 и 100 млн раз)
Урок, который можно извлечь из рис. 12.2, относится к разряду тех, с которыми мы уже знакомы: концепции и заключения, осмысленные на одном масштабе, могут быть неприменимыми на всех масштабах. Это ключевой принцип в физике, да и встречаемся мы с ним постоянно, даже в куда более прозаических контекстах. Возьмём стакан воды. Описание воды как гладкой, однородной жидкости и полезно, и применимо на повседневных масштабах, но это является приближением, которое нарушается, если мы изучаем воду с субмикроскопической точностью. На крошечных масштабах гладкий образ уступает место совершенно другой системе, представляющей собой разделённые большими промежутками молекулы и атомы. Аналогично, рис. 12.2 показывает, что эйнштейновская концепция гладкого, плавно искривлённого геометрического пространства и времени, хотя и является мощной и точной для описания Вселенной на больших масштабах, но рушится, когда мы анализируем Вселенную на экстремально коротких расстояниях и малых временных масштабах. Физики считают, что, как и в случае с водой, образ гладкого пространства и времени является приближением, которое уступает место другим, более фундаментальным представлениям, когда рассматриваются ультрамикроскопические масштабы. Что это за рамки — что представляют собой «молекулы» и «атомы» пространства и времени, — этот вопрос в настоящее время очень энергично изучается. На него ещё предстоит дать ответ.
Однако из рис. 12.2 уже вполне ясно, что на самых мелких масштабах гладкий характер пространства и времени, который представляет нам общая теория относительности, вступает в борьбу с неистовыми флуктуациями квантовой механики. Основной принцип общей теории относительности Эйнштейна, что пространство и время имеют плавно искривлённую геометрическую форму, сталкивается с основным принципом квантовой механики, с принципом неопределённости, который подразумевает дикую, буйную, спутанную среду на мельчайших масштабах. Глубокий конфликт между центральными идеями общей теории относительности и квантовой механики сделал объединение двух теорий одной из самых трудных проблем, с которыми физики сталкивались в течение последних восьмидесяти лет.
Нужно ли это?
На практике несовместимость между общей теорией относительности и квантовой механикой проявляет себя весьма специфическим образом. Если вы используете комбинированные уравнения из общей теории относительности и квантовой механики, они почти всегда приводят к одному ответу: бесконечности. И в этом проблема. Это бессмыслица. Экспериментаторы никогда не измеряют бесконечное количество чего-либо. Стрелки на циферблатах никогда не поворачиваются на бесконечное число оборотов. Линейкой никогда не дотянуться до бесконечности. Калькулятор никогда не покажет бесконечность. Почти всегда бесконечный ответ лишён смысла. Всё это говорит нам, что уравнения общей теории относительности и квантовой механики при попытке их объединения терпят крах.
Отметим, что это совершенно не похоже на трение между
Тем не менее вы можете спросить, имеет ли несовместимость между общей теорией относительности и квантовой механикой реальное значение. Безусловно, объединённые уравнения могут приводить к бессмыслице, но когда вообще вам реально может понадобиться использовать их вместе? Годы астрономических наблюдений показали, что общая теория относительности описывает макромир звёзд, галактик и даже весь расширяющийся космос с впечатляющей точностью; десятилетия экспериментов подтвердили, что квантовая механика делает то же самое для микромира молекул, атомов и субатомных частиц. Поскольку каждая теория чудесно работает в своей собственной области, зачем беспокоиться об их объединении? Почему бы не держать их отдельно? Почему не использовать общую теорию относительности для больших и массивных объектов, квантовую механику для мелких и лёгких, и прославлять впечатляющие достижения человечества в успешном понимании такого широкого круга физических явлений?
На самом деле, это
Во-первых, чисто интуитивно, трудно поверить, что самое глубокое понимание Вселенной достигается в противоестественном союзе двух мощных теоретических схем, которые взаимно несовместимы. Как если бы Вселенная была снабжена пунктирными линиями, разделяющими вещи на те, которые описываются квантовой механикой, и те, которые описываются общей теорией относительности. Разделение Вселенной на две обособленные реальности кажется и искусственным, и неуклюжим. Для многих уже отсюда ясно, что должна существовать более глубокая, объединённая истина, которая преодолевает пропасть между общей теорией относительности и квантовой механикой и которая
Во-вторых, хотя большинство объектов действительно являются либо большими и тяжёлыми, либо маленькими и лёгкими и, следовательно, в практическом смысле могут быть описаны с использованием общей теории относительности