Свойства частиц в теории струн
Чтобы понять новую объяснительную схему теории струн, нам нужно лучше почувствовать, как вибрации струн производят свойства частиц, так что рассмотрим простейшее свойство частицы, её массу.
Из формулы
В этих примерах энергия получается из массы. Но уравнение Эйнштейна прекрасно работает и в обратном направлении — в направлении, в котором масса получается из энергии, — и это то направление, в котором теория струн использует уравнение Эйнштейна. Масса частицы в теории струн есть не что иное, как энергия её вибрирующей струны. Например, объяснение, которое теория струн предлагает тому, почему одна частица тяжелее, чем другая, состоит в том, что струна, представляющая более тяжёлую частицу, колеблется быстрее и сильнее, чем струна, представляющая более лёгкую частицу. Более быстрые и сильные колебания означают более высокую энергию, а более высокая энергия транслируется через формулу Эйнштейна в бо?льшую массу. И наоборот, чем легче частица, тем медленнее и слабее соответствующая вибрация струны; безмассовая частица вроде фотона или гравитона соответствует струне, вибрирующей наиболее спокойным и мягким способом, каким только возможно.[77]{166}
Другие свойства частицы, такие как её электрический заряд и спин, кодируются более тонкими свойствами колебаний струны. По сравнению с массой эти свойства труднее описать без использования математики, но они следуют той же самой основной идее: способ колебаний является отпечатком пальца частицы; все свойства, которые мы используем, чтобы отличать одну частицу от другой, определяются способом колебаний струны, соответствующей данной частице.
В начале 1970-х гг., когда физики анализировали способы вибраций, возникающие в первой инкарнации струнной теории —
Фактически, при ближайшем рассмотрении исследования Рамона, вместе с результатами Шварца и его коллеги Андре Невье и вместе с более поздними идеями Фердинандо Глиоцци, Джоэля Шерка и Дэвида Олива, открыли совершенный баланс — новую симметрию — между фигурами колебаний с различными спинами в модифицированной теории струн. Эти исследователи нашли, что новые способы вибраций возникают парами, в которых величина спина отличается на 1/2. Для каждого способа колебаний со спином 1/2 имеется ассоциированный способ колебаний со спином 0. Для каждого способа колебаний со спином 1 имеется ассоциированный способ колебаний со спином 1/2 и т. д. Связь между целыми и полуцелыми значениями спина назвали
Исходя из этого, мы можем теперь сформулировать, как от общего описания теории струн перейти к детальному описанию Вселенной. Это сводится к следующему: среди способов колебаний, которым могут быть подвержены струны, должны быть такие способы, свойства которых согласуются с соответствующими свойствами известных частиц. Теория содержит моды колебаний со спином 1/2, но она должна включать моды со спином 1/2,
Здесь, следовательно, теории струн есть где развернуться. Если теория струн верна, то объяснения свойств частиц, которые нашли экспериментаторы,
Как же теория струн проходит это решающее испытание?
Слишком много колебаний
На первый взгляд, теория струн терпит крах. Для начала, существует бесконечное число различных способов колебаний струны; несколько первых из этой бесконечной серии схематически изображены на рис. 12.4. Однако табл. 12.1 и 12.2 содержат только конечный список частиц, так что с самого начала мы, кажется, имеем глубокое несоответствие между теорией струн и реальным миром. Более того, если мы математически проанализируем возможные энергии — и, следовательно, массы — этих колебательных мод, мы придём к другому существенному разногласию между теорией и наблюдениями. Массы допустимых мод колебаний струны не похожи на экспериментально измеренные массы частиц, выписанные в табл. 12.1 и 12.2. Нетрудно увидеть, почему.




Рис. 12.4. Несколько примеров способов (мод) колебаний струны
В начале развития теории струн исследователи понимали, что жёсткость струны обратно пропорциональна её длине (квадрату её длины, более точно): в то время как длинные струны изгибаются легко, чем короче струна, тем жёстче она становится. В 1974 г., когда Шварц и Шерк предложили уменьшить размер струн так, чтобы они давали гравитационную силу правильной величины, они, следовательно, предложили также увеличить натяжение струн — в любых вариантах это приводит к