натяжению около тысячи триллионов триллионов триллионов (1039) т, что примерно в 100000000000000000000000000000000000000000 (1041) раз больше натяжения обычной фортепианной струны. Теперь, если вы захотите изогнуть крохотную, чрезвычайно жёсткую струну одним из всё более сложных способов, как показано на рис. 12.4, вы поймёте, что чем больше имеется пиков и впадин, тем больше энергии вы должны передать струне. И наоборот, если струна вибрирует таким замысловатым образом, она содержит гигантское количество энергии. Таким образом, все способы колебаний струны, кроме простейших, являются очень высокоэнергетическими, и поэтому, благодаря формуле
И говоря гигантские, я действительно имею в виду гигантские. Расчёты показывают, что массы колебаний струны следуют рядам, аналогичным музыкальным гармоникам: они все являются кратными фундаментальной массе, массе Планка, так же как все обертона музыкальной струны являются целыми кратными основной частоты или тона. По стандартам физики частиц планковская масса колоссальна — около десяти миллиардов миллиардов (1019) масс протона, грубо говоря, порядка массы пылинки или бактерии. Так что возможные массы колебаний струны суть нуль масс Планка, одна масса Планка, две массы Планка, три массы Планка и т. д., что показывает, что все массы, кроме колебания струны с нулевой массой, чудовищно велики.{167}
Как вы видите, некоторые частицы в табл. 12.1 и 12.2 действительно являются безмассовыми, но большая часть нет. А ненулевые массы в этих таблицах дальше от планковской массы, чем султан Брунея от нужды в кредите. Таким образом, мы ясно видим, что массы известных частиц не соответствуют закономерности, предлагаемой теорией струн. Значит ли это, что теория струн закрыта? Вы могли бы так подумать, но это неверно. Наличие бесконечного списка мод колебаний, массы которых всё более удаляются от масс известных частиц, является вызовом, который теория должна преодолеть. Годы исследований открыли подающие надежды стратегии, как это сделать.
Для начала заметим, что эксперименты с известными типами частиц научили нас, что тяжёлые частицы имеют тенденцию быть нестабильными; обычно тяжёлые частицы быстро распадаются в дождь частиц меньшей массы, в конце концов генерируя легчайшие и более привычные частицы из табл. 12.1 и 12.2 (например,
Из этого объяснения также ясно, что контакт между теорией струн и физикой частиц будет касаться только самых низкоэнергетических — безмассовых — колебаний струны, поскольку другие находятся далеко за пределами того, что мы можем достигнуть с сегодняшней технологией. Но как быть с фактом, что большинство частиц в табл. 12.1 и 12.2 не являются безмассовыми? Это важная проблема, но менее трудная, чем сначала может показаться. Поскольку планковская масса огромна, даже наиболее массивные из известных частиц,
Это ободряет, но внимательный анализ обнаруживает дальнейшие проблемы. Используя уравнения теории суперструн, физики составили список всех безмассовых мод колебаний струны. Одна из записей соответствует гравитону со спином 2, и это большой успех, благодаря которому всё и началось; это гарантирует, что гравитация является частью квантовой теории струн. Но расчёты также показывают, что имеется намного больше безмассовых мод колебаний со спином 1, чем имеется частиц в табл. 12.2, и имеется много больше безмассовых мод колебаний со спином 1/2, чем имеется частиц в табл. 12.1. Более того, список мод колебаний со спином 1/2 не показывает признаков существования повторяющихся групп, напоминающих поколения частиц в табл. 12.1. При поверхностном анализе кажется, что очень трудно увидеть, как колебания струн могут соответствовать известными типам частиц.
Таким образом, к середине 1980-х гг. были основания для оптимизма по поводу теории суперструн, но также существовали и причины для скепсиса. Несомненно, теория суперструн представляла огромный шаг к унификации. Обеспечив первый состоятельный подход к соединению гравитации и квантовой механики, она сделала для физики то же, что сделал Роджер Баннистер в 1954 г. для забега на милю, «выбежав» из четырёх минут: она показала, что кажущееся невозможным возможно. Теория суперструн определённо установила, что мы можем прорваться через кажущийся непроходимым барьер, разделяющий два столпа физики двадцатого столетия.
Однако в попытках идти дальше и показать, что теория суперструн может объяснить детальные свойства материи и сил природы, физики столкнулись с трудностями. Это привело скептиков к заявлению, что теория суперструн, несмотря на весь её потенциал унификации, является просто математической структурой, напрямую никак не связанной с физической Вселенной.
Даже при всех тех проблемах, которые мы сейчас обсуждали, во главе списка проблем теории суперструн, составленного скептиками, была особенность, с которой мне пора вас познакомить. Теория суперструн действительно обеспечивает успешное соединение гравитации и квантовой механики, единственно свободное от математической несостоятельности, которая была бедствием всех предыдущих попыток. Однако, хотя это может звучать странно, в первые годы после её открытия физики нашли, что уравнения теории суперструн не имеют этих завидных свойств, если Вселенная имеет три пространственных измерения. Уравнения теории струн математически состоятельны, только если Вселенная имеет
В сравнении с этим странно звучащим утверждением проблемы в установлении точного соответствия между модами колебаний струн и известными типами частиц кажутся второстепенной проблемой. Теория суперструн требует существования шести измерений пространства, которых никто никогда не видел. Это не мелкая деталь — это
Или они существуют?
Теоретические открытия, сделанные в течение первых десятилетий XX в., задолго до появления на сцене теории струн, показали, что дополнительные измерения совсем не обязаны быть проблемой. И, переосмыслив эту проблематику, в конце XX в. физики показали, что эти дополнительные измерения дают возможность перекинуть мост через пропасть между модами колебаний в теории струн и элементарными частицами, открытыми экспериментаторами.
Это одно из самых впечатляющих достижений теории; посмотрим, как это работает.
Объединение в высших измерениях
В 1919 г. Эйнштейн получил статью, которую легко можно было выбросить как бред сумасшедшего. Она была написана малоизвестным немецким математиком по имени Теодор Калуца и в нескольких коротких страницах закладывала подход к объединению двух сил, известных в то время, — гравитации и