которыми мы сталкиваемся в повседневной жизни, не изолированы: они взаимодействуют с нами и с окружением. Книга, находящаяся сейчас в ваших руках, подвергается контакту с человеком и, вообще, постоянно бомбардируется фотонами и молекулами воздуха. Более того, поскольку сама книга состоит из многих молекул и атомов, эти постоянно дрожащие составляющие непрерывно сталкиваются друг с другом. То же самое справедливо для стрелок измерительных приборов, для котов, для человеческих мозгов и просто для всего, с чем вы сталкиваетесь в повседневной жизни. На астрофизических масштабах Земля, Луна, астероиды и другие планеты непрерывно бомбардируются фотонами Солнца. Даже частичка пыли, плавающая в темноте космического пространства, подвергается непрерывным толчкам низкоэнергетических микроволновых фотонов, которые начали путешествовать по пространству спустя небольшое время после Большого взрыва. Итак, чтобы понять, что квантовая механика говорит о событиях реального мира, — в противоположность рафинированным лабораторным экспериментам, — мы должны применить уравнение Шрёдингера к этим более сложным, более беспорядочным ситуациям.
По существу, это было то, на что обратил внимание Цей. Его работа и работы многих других, кто последовал за ним, открыли нечто действительно удивительное. Хотя фотоны и молекулы воздуха слишком малы, чтобы оказать существенное влияние на движение большого объекта, например книги или кота, но они в состоянии сделать кое-что другое. Они непрерывно «толкают» волновую функцию большого объекта или, говоря на языке физики, они возмущают её
Если волновая функция изолированного электрона показывает, что он имеет, скажем, 50% вероятности находиться здесь и 50% вероятности находиться там, мы должны интерпретировать эти вероятности, используя всю причудливость квантовой механики. Поскольку обе альтернативы могут проявить себя при смешивании и генерировать интерференционную картину, мы должны думать о них как о реальных в равной степени. Проще говоря, кажется, что электрон находится в обоих положениях. Что произойдёт, если мы измерим положение электрона неизолированными лабораторными инструментами обычного размера? Тогда в соответствии с неопределённостью местонахождения электрона стрелка инструмента имеет 50% вероятности указать на одно значение и 50% вероятности — на другое. Но вследствие декогеренции стрелка не будет находиться в призрачной смеси, указывая на обе величины; вследствие декогеренции мы можем интерпретировать
Сходные рассуждения применимы и для всех других сложных неизолированных объектов. Если квантовые расчёты показывают, что кот, сидя з закрытом ящике, имеет 50% шансов быть мёртвым и 50% шансов быть живым — поскольку имеется 50% шансов, что электрон попадёт в счётчик и запустит устройство, которое отравит кота ядовитым газом, — то декогеренция означает, что кот
Трудно было бы представить более удовлетворительное решение проблемы квантового измерения. Будучи более реалистичными и отказываясь от упрощающего предположения, которое игнорирует окружающую среду, — упрощения, которое было критически важным на ранних этапах развития квантовой механики, — мы бы обнаружили, что квантовая механика имеет встроенное решение проблемы измерения. Сознание человека, люди-экспериментаторы и наблюдения людьми не играли бы больше особой роли, поскольку они (мы!) были бы просто элементами окружающей среды, подобными молекулам воздуха и фотонам, которые могут взаимодействовать с данной физической системой. Также больше не было бы пропасти между эволюцией объекта и эволюцией при измерении этого объекта экспериментатором. Всё сущее — наблюдаемое и наблюдатель — существовало бы на одинаковом основании. Всё сущее — наблюдаемое и наблюдатель — подчинялось бы в точности одним и тем же квантово-механическим законам, как установлено уравнением Шрёдингера. Акт измерения больше не являлся бы чем-то специальным; он просто был бы одним из специальных примеров взаимодействия системы с окружающей средой.
Вот оно? Декогеренция разрешила проблему квантового измерения? Декогеренция ответственна за то, что волновая функция закрывает дверь всем, кроме одного потенциального исхода, к которому она может привести? Некоторые так думают. Такие исследователи, как Роберт Гриффитс из Карнеги Меллон, Роланд Омнес из Орси, нобелевский лауреат Мюррей Гелл-Манн из института Санта-Фе и Джим Хартл из Калифорнийского университета в Санта-Барбаре достигли большого прогресса и утверждают, что они развили представление о декогеренции до состояния завершённой концепции (названной
Однако ключевая проблема, которую я обошёл в обсуждении, заключается в том, что хотя декогеренция подавляет квантовую интерференцию и поэтому заставляет таинственные квантовые вероятности быть похожими на их привычных классических двойников,