описание действительности вплоть до наименьших доступных масштабов расстояний. Поэтому, следуя сложившимся традициям, мы будем продолжать говорить об «элементарных частицах», но при этом всегда будем помнить, что в действительности это «то, что выглядит элементарной частицей, но на самом деле представляет собой крошечную колеблющуюся струну». В предшествующем разделе мы предположили, что массы и константы взаимодействия таких элементарных частиц связаны с модами колебаний соответствующих струн. Это приводит нас к следующему выводу: если бы мы смогли точно определить все допустимые резонансные моды колебаний фундаментальных струн, — так сказать, «ноты», которые они могут исполнять, мы смогли бы объяснить наблюдаемые свойства элементарных частиц. Таким образом, теория струн впервые предлагает систему, позволяющую
На данной стадии нужно «взять» струну и «притронуться» к ней всеми возможными способами, чтобы определить возможные моды резонансных колебаний. Если теория струн права, возможные резонансные моды точно воспроизведут наблюдаемые свойства перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, передающих взаимодействия. Конечно, струны слишком малы, чтобы можно было осуществить такой эксперимент в буквальном смысле слова. Вместо этого мы будем «притрагиваться» к струнам
В следующих главах мы более подробно обсудим имеющиеся проблемы, однако полезно сначала ознакомиться с ними в самых общих чертах. Окружающие нас струны могут иметь самое разное натяжение. Например, шнурки на ботинках обычно натянуты намного слабее, чем струны на скрипке. И те и другие, в свою очередь, имеют гораздо меньшее натяжение, чем струны рояля. Единственным параметром, который требуется для калибровки теории струн, является их натяжение. Как определить это натяжение? Если бы мы могли коснуться фундаментальной струны, мы узнали бы её жёсткость и могли бы определить её натяжение тем же способом, который используется для других, более привычных струн. Но поскольку фундаментальные струны так малы, мы не можем использовать этот подход, и возникает необходимость в разработке косвенного метода. В 1974 г., когда Шерк и Шварц предположили, что одна из мод колебания струн представляет собой гравитон, они смогли использовать такой косвенный метод и определить натяжение, с которыми оперирует теория струн. Их расчёты показали, что интенсивность взаимодействия, передаваемого колебанием струны, соответствующем гравитону, обратно пропорциональна натяжению струны. А поскольку гравитон передаёт гравитационное взаимодействие, которое является очень слабым, полученное ими значение натяжения оказалось колоссальным: тысяча миллиардов миллиардов миллиардов миллиардов (1039) тонн, так называемое
Три следствия жёстких струн
Во-первых, в то время, как струны рояля закреплены, что гарантирует постоянство их длины, для фундаментальных струн подобного закрепления, ограничивающего их размер, нет. Вместо этого чудовищное натяжение струн заставляет петли, которые рассматриваются в теории струн, сжиматься до микроскопических размеров. Детальные расчёты показывают, что под действием планковского натяжения типичная струна сжимается до планковской длины, т. е. до 10?33 см, как отмечалось выше.{47}
Во-вторых, вследствие такого огромного натяжения типичная энергия колеблющейся петли в теории струн становится чрезвычайно большой. Чтобы понять это, вспомним, что чем больше натяжение струны, тем труднее заставить её колебаться. Например, заставить колебаться струну скрипки гораздо легче, чем струну рояля. Поэтому две струны, колеблющиеся совершенно одинаковым образом, но натянутые по- разному, будут иметь различную энергию. Струна с большим натяжением будет иметь большую энергию, чем струна с низким натяжением, поскольку для того, чтобы привести её в движение, потребуется большее количество энергии.
Это говорит о том, что энергия колеблющейся струны зависит от двух вещей: от точного вида колебаний (более интенсивные колебания соответствуют более высокой энергии) и от натяжения струны (более сильное натяжение, опять же, соответствует более высокой энергии). На первый взгляд это описание может привести вас к мысли, что при переходе к более слабым колебаниям, с меньшей амплитудой и с меньшим числом максимумов и минимумов, струна будет обладать всё меньшей энергией. Однако, как будет показано в главе 4 (в другом контексте), квантовая механика утверждает, что это рассуждение неверно. Согласно квантовой механике колебания струн, подобно всем другим колебаниям и волноподобным возмущениям, могут иметь только дискретные значения энергии. Грубо говоря, подобно компаньонам из ангара, у которых доверенные им деньги равны произведению
Ключевым моментом здесь является следующее. Поскольку минимальный энергетический номинал пропорционален огромному натяжению струны, минимальная фундаментальная энергия также будет огромна по сравнению с обычными масштабами физики элементарных частиц. Она будет кратна величине, известной под названием
Здесь возникает важный вопрос, имеющий прямое отношение к задаче воспроизведения характеристик частиц в табл. 1.1 и 1.2. Если «естественная» энергетическая шкала теории струн примерно в десять миллиардов миллиардов раз превышает значения энергии и массы протона, как она может использоваться для намного более лёгких частиц — электронов, кварков, протонов и т. п., — образующих