окружающий нас мир?
Ответ снова приходит из квантовой механики. Соотношение неопределённостей гарантирует, что не существует состояния абсолютного покоя. Все объекты испытывают квантовые флуктуации, поскольку в противном случае мы могли бы, в нарушение соотношения Гейзенберга, с абсолютной точностью узнать их местоположение и скорость. Это справедливо и для петель теории струн: независимо от того, насколько спокойной выглядит струна, она всегда в той или иной мере испытывает действие квантовых осцилляций. Замечательный факт, впервые установленный в 1970-х гг., состоит в том, что квантовые осцилляции и обычные колебания струны, которые обсуждались выше и были показаны на рис. 6.2 и 6.3, с энергетической точки зрения взаимно
Из этого следует, что сравнительно лёгкие фундаментальные частицы табл. 1.1 и 1.2 образуются, в некотором смысле, из тумана, расстилающегося над ревущим океаном высокоэнергетических струн. Даже такая тяжёлая частица, как
Это ведёт нас к третьему следствию, имеющему огромное значение в теории струн. Существует бесконечное число мод колебаний струны. Для примера на рис. 6.2 мы показали начало бесконечной последовательности вариантов, характеризующих вероятности колебаний с увеличивающимся числом максимумов и минимумов. Не означает ли это существование бесконечной последовательности элементарных частиц, что находилось бы в явном противоречии с современной ситуацией в экспериментальных исследованиях, показанной на табл. 1.1 и 1.2?
Ответом является «да». Если теория струн верна, каждой из бесконечного множества резонансных мод колебаний струн должна соответствовать элементарная частица. Здесь, однако, есть один важный момент. Высокое натяжение струн гарантирует, что за редким исключением эти моды колебаний соответствуют чрезвычайно тяжёлым частицам (исключение составляют колебания с минимальной энергией, которые отличаются почти полным сокращением массы ввиду квантовых флуктуаций). Слово «тяжёлый» здесь опять же означает «во много раз тяжелее планковской массы». Поскольку самые мощные из существующих ускорителей способны достичь энергий порядка тысячи масс протона, что составляет менее одной миллионной от одной миллиардной планковской энергии, возможность лабораторного изучения этих новых частиц, предсказываемых теорией струн, появится ещё нескоро.
Существуют, однако, другие, менее прямые способы поиска таких частиц. Например, энергии при возникновении Вселенной были достаточно высокими, чтобы такие частицы появлялись в изобилии. Вообще говоря, вряд ли можно ожидать, что эти частицы дожили до наших дней, поскольку сверхтяжёлые частицы обычно нестабильны и высвобождают свои огромные массы путём последовательного распада на всё более лёгкие частицы, превращаясь, в конце концов, в обычные, относительно лёгкие частицы окружающего нас мира. Однако существует вероятность того, что такое сверхтяжёлое состояние колебаний струны, являющееся реликтом эпохи Большого взрыва, могло дожить до наших дней. Открытие таких частиц, которое будет обсуждаться подробнее в главе 9, стало бы эпохальным событием.
Гравитация и квантовая механика в теории струн
Единая схема, которую даёт теория струн, очень привлекательна. Но истинную неотразимость придаёт ей возможность избавиться от вражды между гравитационным взаимодействием и квантовой механикой. Вспомним, что проблема при объединении общей теории относительности и квантовой механики возникает, когда основное понятие первой из них — плавно искривлённая геометрическая структура пространства и времени — сталкивается с главной особенностью второй, что всё во Вселенной, включая структуру пространства и времени, испытывает квантовые флуктуации, интенсивность которых растёт при уменьшении масштаба исследований. На субпланковском масштабе расстояний квантовые флуктуации становятся столь сильными, что приводят к разрушению понятия гладкого искривлённого геометрического пространства, и это означает нарушение принципов общей теории относительности.
Теория струн смягчает неистовые квантовые флуктуации путём «размазывания» микроскопических характеристик пространства. На вопрос о том, что это значит в действительности и как это разрешает противоречие, есть два ответа: грубый и более точный. Мы поочерёдно рассмотрим каждый из них.
Грубый ответ
Хотя это звучит довольно наивно, один из способов, которым мы можем изучить структуру какого- либо объекта, состоит в том, чтобы бросать в него другие предметы и наблюдать за тем, как они отражаются от него. В качестве примера укажем, что мы способны видеть предметы потому, что наши глаза собирают, а наш мозг расшифровывает информацию, которую несут фотоны, отражающиеся от объектов, на которые мы смотрим. На этом же принципе основаны ускорители частиц: в них частицы материи, например, электроны и протоны, сталкиваются между собой и с другими объектами; затем специальные детекторы анализируют разлетающиеся осколки для получения информации, позволяющей определить структуру объектов, участвующих в столкновениях.
Общее правило при таких исследованиях состоит в том, что