состояния называют
Для кардинальных переходов с разрывом пространства и для переходов от одной из пяти формулировок теории струн к другой (см. главу 12) умышленно использовалась одна и та же аналогия с водой, так как эти переходы тесно связаны. Вспомним (см. рис. 12.11), что пять теорий струн дуальны друг другу и, следовательно, объединены под эгидой охватывающей их единой теории. Но сохранится ли возможность непрерывного перехода от одного описания к другому, т. е. возможность попасть в любую точку карты рис. 12.11 из любой другой, и после того, как мы будем свёртывать лишние измерения в разные многообразия Калаби–Яу? До открытия переходов с кардинальным изменением топологии ожидаемый ответ был отрицательным, так как до этого открытия не было известно, как деформировать одно многообразие Калаби–Яу в другое. Однако сейчас мы видим, что ответ положительный. Путём физически допустимых конифолдных переходов с разрывом пространства можно непрерывно преобразовать любое заданное многообразие Калаби–Яу в любое другое. Все струнные модели, полученные изменениями константы связи и геометрии пространства Калаби–Яу, будут разными фазами единой теории. Целостность схемы рис. 12.11 сохранится даже после сворачивания всех дополнительных измерений.
Энтропия чёрной дыры
Многие годы самые лучшие специалисты в области теоретической физики рассуждали о возможности процессов с разрывом пространства и о связи между чёрными дырами и элементарными частицами. Хотя ранее такие рассуждения могли казаться научной фантастикой, открытие теории струн, в результате которого стало возможным объединение общей теории относительности и квантовой теории, позволило уверенно выдвинуть эти вопросы на передний край современной науки. Успехи теории струн вдохновляют на исследование вопроса о том, не могут ли и другие таинственные свойства Вселенной, десятилетиями не поддававшиеся решению, уступить натиску всемогущей теории струн? Важнейшим из этих свойств является
Энтропия — это мера беспорядка или хаотичности. Например, если рабочее место завалено открытыми книгами, недочитанными статьями, старыми газетами и ещё не попавшими в мусорное ведро рекламными проспектами, то степень его беспорядка велика, и оно имеет
Конечно, примеру перегруппировки предметов на рабочем месте с его нечётким определением того, какие именно перегруппировки «не изменяют общий вид», не достаёт научной точности. На самом деле, в строгом определении энтропии рассматриваются микроскопические квантово-механические параметры, описывающие элементарные физические составные части системы, и для этих параметров вычисляется число возможных перегруппировок, при которых итоговые макроскопические параметры (например, энергия или температура) не изменяются. Детали несущественны, если понятен факт, что квантово- механическая энтропия является строгим понятием, позволяющим точно измерять общий беспорядок в физических системах.
В 1970 г. Якоб Бекенштейн, в то время учившийся в аспирантуре Принстонского университета у Джона Уилера, сделал смелое предположение. Он выдвинул замечательную идею о том, что чёрные дыры обладают энтропией, которая очень велика. Бекенштейн опирался на общепризнанное и хорошо проверенное
Но что произойдёт, рассуждал далее Бекенштейн, если сделать уборку рабочего места вблизи горизонта событий чёрной дыры и откачать насосом все разогнанные молекулы, образовавшиеся во время уборки, в бездонный омут чёрной дыры? Можно поступить ещё более радикально: откачать весь воздух, всё содержимое рабочего стола вместе со столом, да и самого бедного физика, оставив пустую, зато идеально прибранную комнату. Так как очевидно, что энтропия в комнате уменьшится, Бекенштейн пришёл к выводу, что второе начало термодинамики не будет нарушено лишь в случае, если у чёрной дыры тоже есть энтропия, и эта энтропия постоянно растёт по мере засасывания в чёрную дыру материи, компенсируя наблюдаемое уменьшение энтропии снаружи чёрной дыры.
На самом деле Бекенштейну для усиления своей аргументации удалось даже привлечь знаменитый результат Стивена Хокинга, который показал, что площадь горизонта событий чёрной дыры, т. е. площадь поверхности вокруг чёрной дыры, после пересечения которой нет пути назад, всегда увеличивается при любых физических взаимодействиях. Хокинг продемонстрировал, что если в чёрную дыру попадёт астероид, или если на чёрную дыру попадёт излучение с поверхности близкой звезды, или если две чёрные дыры столкнутся и объединятся, то полная площадь горизонта событий чёрной дыры обязательно увеличится. Для Бекенштейна неуёмный рост этой площади был связующим звеном с неумолимым ростом энтропии согласно второму началу термодинамики. Он предположил, что площадь горизонта событий чёрной дыры и есть точная мера её энтропии.
Однако при ближайшем рассмотрении можно найти два объяснения тому, почему большинство физиков считали, что идея Бекенштейна неверна. Во-первых, чёрные дыры кажутся одними из наиболее упорядоченных и организованных объектов во всей Вселенной. Как только измерена масса, заряд и спин