расстояние a на восток (на запад, если a отрицательно), а затем на расстояние b на север (на юг, если b отрицательно). Вещественная прямая и мнимая прямая (их чаще называют «вещественная ось» и «мнимая ось») пересекаются в нуле. Точки на вещественной оси имеют нулевую мнимую часть. Точки на мнимой оси имеют нулевую вещественную часть. Точка их пересечения — т.е. точка, расположенная на обеих осях, — имеет и вещественную, и мнимую части равными нулю. Это точка 0 + 0i, т.е. попросту нуль.

Введем три новых профессиональных термина. Модуль комплексного числа — это расстояние по прямой от этого числа до нуля. Обозначается модуль как |z|, что произносится «модуль зет». По теореме Пифагора модуль комплексного числа a + bi есть . Это всегда положительное вещественное число или нуль. Фаза комплексного числа — это угол, составленный с положительной частью вещественной оси, измеряемый в радианах. (Один радиан равен 57,29577951308232… градуса; 180 градусов — это ? радиан.) Фазу по соглашению считают углом, лежащим между ?? (не включая) до ? (включая), а обозначается она как ?(z).[93] У положительных вещественных чисел фаза равна нулю, у отрицательных вещественных она равна ??, у положительных мнимых равна ?/2, а у отрицательных мнимых фаза равна ??/2.

И наконец, комплексным сопряжением комплексного числа называется его зеркальное отображение относительно вещественной оси. Комплексное сопряжение числа a + bi есть a ? bi. Обозначается оно как z', что произносится как «зет-с-чертой».{2} Если перемножить комплексное число с его сопряженным, то получится вещественное число: (a + bi)?(a ? bi) = a2 + b2, что, как видно, есть квадрат модуля числа a + bi. На этом и основан фокус, позволяющий делить комплексные числа. Используя введенные обозначения, можно записать z?z' = |z| 2, а фокус с делением выражается как z/w = (z?w')/|w| 2.

Модуль комплексного числа ?2,5 + 1,8i, показанного на рисунке 11.2, равен v9,49, то есть около 3,080584, фаза составляет 2,517569 радиана (или, если вам так больше нравится, 144,246113 градуса), а сопряженное число, конечно, есть ?2,5 ? 1,8i.

VI.

Чтобы продемонстрировать комплексную плоскость в действии, я чуть-чуть потренируюсь в анализе с комплексными числами. Рассмотрим бесконечный ряд из выражения (9.2):

1/(1 ? x) = 1 + x + x2 + x3 + x4 + x5 + x6 + … (x лежит строго между ?1 и 1).

Поскольку здесь не предпринимается никаких действий, кроме сложения, умножения и деления чисел, нет причин, по которым x нельзя было бы сделать комплексным числом. Работает ли эта формула для комплексных чисел? Да, при определенных условиях. Пусть, например, x равен 1/2i. Тогда ряд сходится. Имеем

1/(1 ? i/2) = 1 + 1/2i + 1/4i2 + 1/8i3 + 1/16i4 + 1/32i5 + 1/64i6 + …

Левая часть вычисляется с помощью рассмотренного выше фокуса с делением как 0,8 + 0,4i. Правую часть можно упростить, используя тот факт, что i2 = ?1:

0,8 + 0,4i = 1 + 1/2i ? 1/4 + 1/8i ? 1/16 + 1/32i1/64 + …

Можно пройти правую часть этой формулы на комплексной плоскости. Идея видна из рисунка 11.3. Начнем из точки 1 (которая, разумеется, расположена на вещественной оси). Оттуда идем на север, что соответствует прибавлению 1/2i. Затем на запад на 1/4 потом на юг в соответствии с вычитанием 1/8i и т.д. Получается спираль, замыкающаяся на комплексном числе 0,8 + 0,4i. Вот вам анализ в действии — бесконечный ряд сходится к этому пределу.

Рисунок 11.3. Анализ на комплексной плоскости.

Заметим, что при переходе к комплексным числам мы потеряли простоту одного измерения, но зато приобрели некоторые преимущества наглядности. При наличии в нашем распоряжении двух измерений можно, как мы только что это и делали, демонстрировать математические результаты в виде замечательных наглядных образов и картинок. В этом до известной степени и состоит привлекательность комплексного анализа (для меня, во всяком случае). В главе 13 мы сможем увидеть дзета-функцию Римана (и саму великую Гипотезу!), выраженную в виде изящных узоров на комплексной плоскости.

Глава 12. Восьмая проблема Гильберта

I.

Давиду Гильберту было 38 лет, когда утром в среду 8 августа 1900 года он выходил к трибуне 2-го международного конгресса математиков. Сын судьи из столицы Восточной Пруссии Кенигсберга[94], он прославился как математик за 12 лет до того, решив проблему Гордана в теории алгебраических инвариантов.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату