захотел измерить расстояние до точки В. Как ему проще всего узнать ширину реки, не переплывая ее?

304. Пэт и его свинья. Вы видите на рисунке квадратное поле размером 100 ? 100 м. Пэт и свинья, которую он хочет поймать, находятся в противоположных углах на расстоянии 100 м друг от друга. Свинья бежит прямо к калитке в левом верхнем углу. Так как Пэт бегает вдвое быстрее свиньи, то вы, вероятно, решите, что он первым успеет добежать до калитки, чтобы закрыть ее. Но надо знать Пэта: он все время бежит прямо на свинью, описывая при этом кривую линию.

Успеет убежать свинья или Пэт схватит ее? А если схватит, то какое расстояние она пробежит к тому времени?

305. Лестница. Однажды, только зашел разговор о лестнице, которая требовалась для каких-то домашних нужд, как профессор Рэкбрейн внезапно прервал дискуссию, предложив ее участникам маленькую головоломку:

— Лестница стоит вертикально у высокой стены дома. Кто-то оттаскивает ее за нижний конец на 4 м от стены. Оказывается, что верхний конец лестницы опустился на ? её длины.

Чему равна длина лестницы?

306. Громоотвод. Порывом сильного ветра сломало шест громоотвода, так что его верхушка ударилась о землю на расстоянии 20 м от основания шеста. Шест починили, но он вновь сломался под порывом ветра на 5 м ниже, чем раньше, и ударился верхушкой о землю на расстоянии 30 м от основания.

Какова высота шеста? В обоих случаях сломанная часть шеста не отрывалась полностью от остальной его части.

307. Веревка. Веревка спускается с потолка, касаясь пола. Если, сохраняя веревку в натянутом состоянии, коснуться ею стены, конец веревки окажется на расстоянии 3 см от пола. Расстояние же от свободно свисающей веревки до стены 48 см.

Какова длина веревки?

308. Гонец. Гонец (см. рисунок) как можно скорее должен доставить депешу в место, отмеченное палаткой. Расстояния указаны. Известно, что по мягкому торфу (заштрихованная часть) гонец скачет в два раза быстрее, чем по песку.

Не могли бы вы указать гонцу правильный путь? Это как раз одна из тех практических задач, с которыми постоянно сталкиваются в армейской обстановке. От того, какой путь выберет гонец, может зависеть очень многое.

Как бы вы поступили на его месте? Разумеется, торфяник и участок с песчаным грунтом везде имеют одинаковую ширину, так что в этой головоломке нет подвоха.

309. Шесть подводных лодок. Читатели, быть может, помнят головоломку, в которой требовалось расположить 5 одинаковых монет так, чтобы каждая касалась всех остальных. Один читатель предположил, что то же можно сделать и с шестью монетами, если мы расположим их так, как показано на рисунке, то есть с А, В и С в форме треугольника и с D, Е и F поверх А, В и С. Он считал, что если рассечь монеты по линии XY (см. нижнюю часть рисунка), то Е и С, а также В и F сойдутся в «математической точке» и, следовательно, коснутся друг друга. Но он не прав, так как если Е касается С, то они тем самым образуют барьер между В и F. Если же В касается F, то Е не может коснуться С.

Думаю, что это небольшое заблуждение заинтересует многих читателей. Когда мы говорим, что несколько предметов соединяются друг с другом в некоторой точке (как спицы колеса), то всего лишь три из них могут касаться друг друга (каждый каждого), находясь в одной плоскости.

Это навело меня на мысль предложить следующую «задачу о касании». Если 5 подводных лодок затонуло в один день в одном и том же месте, где до них затонула еще одна лодка, как они могут лечь на дно, чтобы каждая из шести лодок касалась всех остальных? Дабы упростить задачу, мы вместо лодок возьмем 6 спичек и расположим их так, чтобы каждая спичка касалась всех остальных. Спички нельзя ни сгибать, ни ломать.

310. Короткая веревка. Одна леди оказалась в затруднительном положении: ей хотелось отправить посылку сыну, а веревки у нее было всего 3 м 60 см, если не считать узлов! Веревка должна один раз охватывать посылку вдоль и два раза поперек (см. рисунок).

Какую наибольшую посылку в форме прямоугольного параллелепипеда она сможет отправить при таких условиях?

311. Гранитный пьедестал. При сооружении квадратного фундамента и кубического пьедестала для памятника были использованы гранитные кубические блоки размером 1 ? 1 м. На пьедестал пошло ровно столько блоков, сколько и на квадратный фундамент, в центре которого он стоял, причем все блоки использовались целиком, нераспиленными.

Взгляните на рисунок и попытайтесь определить общее число использованных блоков. Фундамент имеет толщину в один блок.

312. Парадокс с кубом. У меня было два сплошных свинцовых куба, причем один из них чуть-чуть больше другого (см. рисунок). В одном кубе я проделал дырку таким образом, чтобы второй куб мог в нее пройти. Взвесив затем оба куба, я обнаружил, что больший куб все еще тяжелее меньшего! Как это могло получиться?

313. Картонная коробка. Читатель, наверное, замечал, что есть много задач и вопросов, ответ на которые, казалось бы, должен быть известен уже многим поколениям до нас, но которые, однако, никогда, по-видимому, даже и не рассматривались. Вот один пример такой задачи, пришедший мне на ум.

Допустим, у меня имеется закрытая картонная коробка в форме куба. Разрезав ее бритвой вдоль 7 из 12 ребер (их обязательно должно быть 7), я сумею развернуть коробку на плоскость, причем развертка может принять разные формы. Так, если я проведу бритвой вдоль ребер, показанных на рисунке жирной линией, и по невидимому ребру, обозначенному пунктиром, то получу развертку А. Разрезав коробку иначе, можно получить развертку В или С. Нетрудно заметить, что развертка D есть просто перевернутая развертка С, поэтому такие две развертки мы считаем тождественными.

Сколько всего различных разверток можно получить таким образом?

314. Венский крендель. На рисунке изображен фигурный венский крендель. Узел, похожий на свернутые свиные хвостики, служит только украшением. Этот крендель обречен на то, что его либо разрежут, либо разломят; но вот интересно, на сколько частей?

Допустим, перед вами на столе лежит этот крендель. На какое максимальное число частей вы. сможете его разрезать одним прямым взмахом ножа? В каком направлении следует провести этот разрез?

315. Разрежьте сыр. Вот один простой вопрос, на который можно получить правильный ответ, подумав всего лишь несколько секунд. У меня есть кусок сыра в форме куба. Как мне следует провести один прямой разрез ножом, чтобы две новые грани оказались правильными шестиугольниками?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату