87. Молодые люди едут втрое быстрее, чем идут пешком; следовательно, ? всего времени им необходимо затратить на обратный путь и только V4 ехать на автобусе. Таким образом, они будут ехать в течение 2 ч, покрыв расстояние в 18 км, и идти пешком 6 ч. Возвратятся они ровно через 8 ч после отъезда.

88. Водитель должен провезти четверых солдат 12 км и высадить их в 8 км от пункта назначения. Затем он должен вернуться на 8 км и подобрать еще четверых солдат (из восьми), которые к тому времени там окажутся, провезти их 12 км и высадить в 4 км от пункта назначения. Вернувшись затем на 8 км за остальными солдатами, которые к тому времени успеют пройти 8 км от исходного пункта, везти их 12 км до конца. Все солдаты прибудут на место назначения одновременно, причем автомобиль пройдет 52 км за 2? ч. Следовательно, солдаты прибудут на место в 2 ч 36 мин.

89. Расстояние между пунктами составляет 300 км.

90. Расстояние равно 13? км; так что в город мистер Уилкинсон идет 2? ч, а возвращается 4? ч, затратив на путь в общей сложности 7 ч.

91. Расстояние от Лондона до Баглминстера составляет 72 км.

92. Робинсон догонит Брауна через 12 мин после старта.

93. Для решения задачи не требуется алгебраических выкладок, не нужно знать и расстояние между городами. Отправим оба поезда от места встречи, где бы она ни произошла, обратно с теми же скоростями. Тогда за час первый поезд пройдет 60 км, а второй 40 км. Поэтому расстояние между поездами за час до встречи равно 60 + 40, или 100 км.

94. Через 20 мин после начала путешествия Пэт сообщил, что пройдена половина того расстояния, которое оставалось до Пигтауна. Следовательно, путь от Богули до Пигтауна занимает 1 ч.

Отъехав от Пигтауна на 5 миль, Пэт и полковник Крэкхэм оказались вдвое ближе к Болифойну, чем к Пигтауну. Еще через час они достигли Болифойна. Следовательно, путь от Пигтауна до Болифойна занимает 3 ч. Поскольку 5 миль попутчики проехали за 2 ч, то за 4 ч они проезжали 10 миль. Следовательно, искомое расстояние 10 миль.

95. Второй человек, увидев, что его приятель повернулся и идет ему навстречу, стал пятиться и прошел таким образом 200 м. Конечно, его поведение было весьма эксцентрично, но он поступил именно так, и это единственный ответ на вопрос задачи. В результате приятели смогли, глядя друг на друга, двигаться по прямой в одном направлении.

96. Если бы весы были неверными из-за различного веса их чашек, то истинный вес пудинга составлял бы 154 г; первое показание весов дало бы 130, а второе 178 г. Половина суммы показаний весов (среднее арифметическое) равна 154. Но из рисунка к условию задачи видно, что чашки весят поровну и что ошибка проистекает из-за разницы в длине плеч коромысла[33]. Следовательно, показания весов равнялись 121 и 169 г, а истинный вес составляет 143 г. Извлекая квадратный корень из произведения показаний весов, мы получим 143 (среднее геометрическое). Длины плеч весов относятся как 11 к 13.

Если мы обозначим через х истинный вес, то для разобранных случаев получим соответственно следующие уравнения:

97. Поскольку одна банка весит 1 кг, то, глядя на левую часть рисунка, мы видим, что 8 пакетов уравновешивают 3 кг и, следовательно, один пакет уравновешивает ? кг. Во втором случае один пакет уравновешивает 6 кг. Умножив ? на 6, мы получим . Извлекая затем квадратный корень из , получаем , или 1? кг. Это и есть истинный вес одного пакета. Значит, восемь пакетов весят 12 кг.

98. Важно отметить, что отец, ребенок и собака вместе весили 180 фунтов, как это показано на рисунке. Далее, разность между 180 и 162 равна 18, что совпадает с удвоенным весом собаки. Значит, собака весит 9, а ребенок 30 фунтов, так как, если из 30 фунтов вычесть 70% этого веса, получится ровно 9.

99. На первых весах мы видим, что яблоко и 6 слив равны по весу груше, поэтому на вторых весах можно, не нарушая равновесия, заменить грушу на яблоко и 6 слив. Затем можно убрать по 6 слив с каждой чашки и обнаружить, что 4 яблока весят столько же, сколько и 4 сливы. Следовательно, одно яблоко равно по весу одной сливе. Заменяя на первых весах яблоко сливой, мы получаем, что одна груша равна по весу 7 сливам. Как пишут в старых учебниках: ч. т. д.

100. 1. Положив на разные чашки гири в 5 и 9 фунтов, отвесить 4 фунта. 2. С помощью 4 фунтов отвесить еще 4 фунта. 3. Отвесить в третий раз 4 фунта. 4. Отвесить в четвертый раз 4 фунта, причем остаток будет также равен 4 фунтам. 5. —9. Поделить с помощью весов каждую порцию в 4 фунта на две равные части.

102. Решениями будут числа 39 157 и 57 139. В каждом случае произведение чисел 39 и 57 минус 1 равно 2222.

103. Если квадрат целого числа оканчивается повторяющимися цифрами, то этими цифрами могут быть лишь 4, как в случае 144 = 122. Но число таких повторяющихся цифр не может превосходить трех; следовательно, ответом служит число 1444 = 382.

104. Расположив цифры следующим образом:

мы увидим, что обе суммы равны.

105. Умножив 273 863 на 365, получим 99 959 995. Заметим, что любое восьмизначное число, у которого первые четыре цифры повторяются, делится без остатка на 73 (и на 137). Кроме того, если такое число оканчивается на 5 или 0, то оно делится также и на 365 (или на 50 005). Зная эти факты, можно сразу же выписать ответ.

106. Разделим 7 101 449 275 362 318 840 579 на 7 «уголком», как нас учили в школе. При делении 7 на 7 получим 1, следующая цифра 1 даст в частном 0, затем снова 1 и т. д., пока мы не дойдем до конца. Сверив частное с делимым, мы увидим, что оно действительно получается при переносе первой семерки делимого в конец. Частное, получающееся при перестановке в конец первой цифры делимого, можно найти для любого делителя и любой цифры.

Очень интересно исследовать задачу в общем виде.

Выбрав делитель равным 2, получим число 2-10-52-6-31 578-94-736-8-4-.

Далее цикл замыкается. Черточки стоят в тех местах, где при делении на 2 нет остатка. Заметьте, что непосредственно за черточкой следуют цифры 1, 5, 6, 3, 9, 7, 8, 4, 2. Следовательно, если необходимо, чтобы число начиналось с 8, то я возьму 842 105 и т. д., отправляясь от цифры 8, стоящей после черточки. Если имеется полный цикл, как в этом случае, а также в случае делителей, равных 3, 6 и 11, то количество цифр искомого числа равно делителю, умноженному на 10 минус 2. Если вы возьмете в качестве делителя 4, то получите пять отдельных циклов. Так, 4-10 256- даст вам числа, начинающиеся с 4 или 1; 20-512-8- — с 2, 5 или 8; 717 948- с 7; 3076-92 — с 3 или 9; 615 384- даст числа, начинающиеся с 6.

Для некоторых делителей, например для 5 и 9, хотя они и порождают несколько отдельных циклов, требуется такое же количество цифр, как если бы они порождали один полный цикл. Наш делитель 7 порождает три цикла: один, показанный выше и дающий числа, у которых первой цифрой служат 7, 1 или 4; второй — для чисел, начинающихся с 5, 8 или 2; третий — с 6, 9 или 3.

107. Мы можем разделить 857 142 на 3, просто перенеся 2 из конца в начало, либо разделить 428 571, перенеся 1.

108. Вот как можно выразить число 64 с помощью двух четверок и арифметических знаков:

[Интерес к задаче «Четыре четверки» с момента ее опубликования периодически оживлялся. Об относительно недавней дискуссии, посвященной этой задаче, я писал в январском номере журнала Scientific American за 1964 г. (см. также заметку в разделе ответов в следующем номере того же журнала). Таблицу, в которой с помощью четырех четверок выражены все числа от 1 до 100, можно найти в книгах: L. Harwood Clarke «Fun With Figures» (N. Y., 1954, pp. 51—53) и Angela Dunn «Mathematical Baffers» (N. Y., 1964, pp. 5—8).

Число 64 легко выразить как с помощью четырех четверок: (4 + 4) ? (4 + 4), так и с помощью трех четверок: 4 ? 4 ? 4. М. Бикнел и В. Е. Хоггат в журнале Recreational Mathematics

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату