209. Алек может выполнить работу за 14 дня, Бил — за 17 дня и Кейзи — за 23 дня.

210. За шестьдесят и сорок дней.

211. Получив остаток от деления на 3, умножьте его на 70, остаток от деления на 5 умножьте на 21 и остаток от деления на 7 — на 15. Сложите результаты, и вы получите либо задуманное число, либо число, отличающееся от задуманного на целое кратное 105. Так, если было задумано 79, то 1, умноженное на 70, плюс 4, умноженное на 21, плюс 2, умноженное на 15, даст 184. Вычтите 105, и вы получите 79 — задуманное число.

212. Всего было 15 пчел.

213. Дева назвала число 28. Трюк состоит в том, чтобы проделать весь процесс вычислений в обратную сторону: умножить 2 на 10, вычесть 8, возвести результат в квадрат и т. д. При этом, например, надо помнить, что увеличить произведение на ? означает взять от него . Обратное действие состоит в том, что берется .

214. Печатник должен купить 22 литеры: А, Б, В, Г, Д, Е, И, Й, К, Л, М, Н, О, П, Р, С, Т, У, Ф, Ь, Ю, Я.

215. В рое было 72 пчелы.

216. Наименьшее число мышей равно 7, причем возможны три случая:

1) 2 хорошо видят, 1 слепа только на правый глаз и 4 полностью слепы;

2) 1 хорошо видит, 1 слепа только на левый глаз, 2 слепы только на правый и 3 полностью слепы;

3) 2 слепы только на левый глаз, 3 только на правый и 2 полностью слепы.

217. Поскольку в зверинце содержалось два чудовища (четырехногая птица и шестиногий теленок), всего в нем было 12 зверей и 24 птицы.

218. В стаде было 1025 овец. Легко понять, что ни одна овца не была покалечена.

219. Доля Чарлза составляет 3456 овец. Вероятно, кое-кто из читателей вначале нашел долю Альфреда, а затем вычел из нее 25%, но такое решение, разумеется, неверно.

220. Номер такси 121.

221. Истекло 54 года арендного срока.

222. Всего в подразделении было 4550 человек. Сначала солдаты шли колонной в 70 шеренг по 65 человек в каждой; затем они перестроились в 5 шеренг по 910 солдат в каждой.

223. Год 1927:

224. Офицер на складе должен выдавать требуемое число снарядов ящиками по 18 снарядов до тех пор, пока не останется число снарядов, кратное 5. Если число снарядов не равно 5, 10 или 25, то остальные снаряды нужно выдавать ящиками по 15 и 20 снарядов. Наибольшее число снарядов, для которого система оказывается негодной, равно 72 плюс 25, то есть 97. Если число снарядов на складе больше, например равно 133, причем 108 снарядов упакованы в 6 ящиков по 18 снарядов в каждом, то офицер должен выдать лишь 1 ящик с 18 снарядами, а оставшиеся 115 снарядов переложить в 1 ящик, вмещающий 15 снарядов, и 5 ящиков, содержащих по 20 снарядов каждый. Если на складе имеется 97 снарядов, то, лишь выдав 72 снаряда, офицер получит остаток, кратный 5, то есть 25 снарядов.

225. Сначала было 7890 саженцев, из которых получился квадрат 88 ? 88, и осталось лишних 146 деревьев. Купив еще 31 дерево, садовник смог увеличить квадрат до 89 ? 89, а деревьев в саду стало 7921.

226. Наименьшее число кубиков в коробке 1344. Строя рамку вокруг пустого квадрата 34 ? 34, первая девочка составила квадрат 50 ? 50, вторая — квадрат 62 ? 62 и третья — квадрат 72 ? 72 с четырьмя лишними кубиками по углам.

227. Стороны треугольника равны 13, 14 и 15, причем основание равно 14, высота 12 и площадь 84. Существует бесконечно много рациональных треугольников, стороны которых выражаются последовательными целыми числами, как, например, 3, 4 и 5 или 13, 14 и 15, но только в одном из них высота удовлетворяет нашим условиям.

Треугольниками, у которых стороны выражаются тремя последовательными целыми числами, а площадь — целым числом, являются следующие:

Их можно найти очень просто:

или в общем виде Un = 4Un-1 - Un-2. Существует и другой способ построения треугольников. Найдите x такое, чтобы 3(x2 - 1) было точным квадратом. Ему будет соответствовать треугольник со сторонами 2x, 2x + 1, 2x - 1.

228. Так как корова и коза в день съедают , корова и гусь и коза с гусем всей травы в день, мы легко находим, что корова съедает , коза и гусь всей травы в день. Следовательно, все вместе они съедают в день (или ) всей травы, так что, поскольку прироста травы не будет, всю траву они съедят за 40 дней.

229. Всего в альбоме было 2519 марок.

230. Существуют два решения, не превосходящие десяти: 3 и 5, 7 и 8.

Общее решение получается следующим образом. Обозначив числа через a и b, получим

Следовательно,

откуда

где m может быть любым целым числом, большим 1, и a выбирается так, чтобы число b было целым. В общем виде

231. Четырежды 2 плюс 20 равно 28. Четыре дрозда ( часть) были подстрелены; вот они-то и остались, потому что остальные дрозды улетели.

232.

233. В XX веке существует 215 дат с указанным свойством, если включать случаи вроде - 00. Наиболее «плодовитым» в этом отношении оказался 1924 г., в котором было 7 таких дат: 24/1 - 24, 12/2 - 24, 2/12 - 24, 8/3 - 24, 3/8 - 24, 6/4 - 24, 4/6 - 24. Чтобы решить задачу, нужно лишь отыскать года, содержащие как можно большее число делителей.

234. Чтобы умножить 993 на 879, нужно действовать так. Вычесть 7 из 879 и прибавить к 993. При этом получаются два числа, 872 и 1000, произведение которых равно 872 000. 993 - 872 = 121. Если 121 умножить на 7, то получится 847. Сложив эти два результата, мы найдем верный ответ: 872 847[38].

235. Искомое число равно 987 654 321, что при умножении на 18 дает 17 777 777 778 с 1 и 8 соответственно в начале и в конце. То же справедливо и для других сомножителей, за исключением 90, когда мы получаем 88 888 888 890 с 90 на конце.

[Автор не заметил таких чисел, как 1001, 10 101 и 100 101, составленных из 0 и 1, с 1 на концах и не содержащих двух идущих подряд 1, каждое из которых также является решением задачи. — М. Г.]

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату