Выигрывают участники, сделавшие это наименьшим числом ударов. — Прим. перев.

25

Пузырьки воздуха, образующиеся при кипении (англ.). — Прим. перев.

26

Если у вас есть возможность замкнуть какой-нибудь квадратик, но вы считаете это нецелесообразным, вы имеете право этого не делать, однако, замкнув квадратик, вы обязаны ходить. — Прим. перев.

27

Правильным,считается следующий порядок: туз, двойка, тройка, четверка, пятерка, шестерка, семерка, восьмерка, девятка, десятка, валет, дама, король. — Прим. перев.

28

В целых числах. — Прим. перев.

29

Вряд ли можно согласиться с подобным решением. После того как фермер продал теленка мяснику, все пять участников (банкир, мясник, фермер, торговец и прачка) оказались в одинаковом положении, а именно: каждый из них должен кому-то 5 долларов, и ему должны точно такую же сумму, так что общий баланс равен нулю. Обращение по кругу фальшивой банкноты фактически эквивалентно тому, как если бы все пять участников собрались вместе и договорились считать долги взаимно погашенными. В этом смысле ее действие ничем не отличается от действия настоящей банкноты. — Прим. перев.

30

Здесь М. Гарднер не совсем прав, поскольку Дьюдени рассматривает IX как совокупность двух цифр: I и X. — Прим. перев.

31

«Мой бог, что за ряд!» (фр.).

32

Ответ следует непосредственно из теоремы о сложении скоростей в механике, а решение автора представляет собой лишь объяснение данной теоремы для рассматриваемого конкретного случая. — Прим. перев.

33

Согласиться с этим утверждением автора можно лишь с большой натяжкой. Действительно, на рисунке весы находятся, по-видимому, в равновесии при неравных (правое длиннее) плечах коромысла, а это как раз и означает, что чашки имеют различный вес! В пользу авторского толкования говорит то, что чашки выглядят одинаково, а «значит», и весят поровну. Но тогда нужно считать, что весы изображены не в положении равновесия, а проходят точку равновесия. Через мгновенье правая чашка начнет опускаться. Пожалуй, вместо апелляции к рисунку следовало бы просто разобрать два приведенных автором случая.- Прим. перев.

34

Можно сказать иначе: вероятность того, что наугад взятое число делится на 11, равна . — Прим. перев.

35

См. примечание на стр. 38.

36

Здесь [a] означает целую часть числа a, то есть наибольшее целое число, не превосходящее a. См. также примечание на стр. 38. — Прим. перев.

37

Целой частью числа называется наибольшее целое число, не превосходящее данное. — Прим. перев.

38

Выбрав a = 879, b = 993 и c = 7, мы и получим правило, по которому действует автор. — Прим. перев.

39

Строго говоря, это еще не доказательство, но его можно легко получить, пользуясь свойствами эллипса. Булавки должны располагаться в фокусах эллипса A к B. CD представляет собой большую, a EF — малую оси эллипса; обозначим их соответственно через 2a и 2b, а фокусное расстояние AB через 2c. Тогда из треугольника AGF получим AF = . Но в силу свойств эллипса = a, то есть AF = CD, что и требовалось. — Прим. перев.

40

Эта кривая называется линией погони. — Прим. перев.

41

См. решение задачи 403. — Прим. перев.

42

Можно сказать, что Дьюдени доказал локальную, а не глобальную теорему. — Прим. перев.

43

Из n предметов m можно выбрать Cnm = способами. Общая сумма способов равна 1 + Cn1 + Cn2 + ... +

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату