электрического тока к индукционной катушке.
Рис. 3. Сверхзвуковая аэродинамическая труба: 1 — рабочая часть; 2 — модель; 3 — аэродинамические весы; 4 — сопло; 5 — диффузор; 6 — спрямляющие решётки; 7 — компрессор с двигателем ; 9 — обратный канал; 10 — теплообменник; 11 — осушитель воздуха.
Рис. 5. а — ударная аэродинамическая труба; б — график изменения давления в ударной трубе.
Аэродинамические измерения
Аэродинами'ческие измере'ния, измерения скорости, давления, плотности и температуры движущегося воздуха, а также сил, возникающих на поверхности твёрдого тела, относительно которого происходит движение, и потоков тепла, поступающих к этой поверхности. Большинство практических задач, которые ставят перед аэрогазодинамикой авиация, ракетная техника, турбостроение, промышленное производство и т. д., требует для своего решения проведения экспериментальных исследований. В этих исследованиях на экспериментальных установках —
Измерение сил и моментов, действующих на обтекаемое тело. При решении многих задач возникает необходимость измерений суммарных сил, действующих на модель. В аеродинамических трубах для определения величины, направления и точки приложения
Полную аэродинамическую силу (момент), действующую на тело, можно представить как сумму равнодействующих нормальных и касательных сил на его поверхности. Чтобы получить значение нормальных сил, измеряют давления на поверхности модели при помощи специальных, т. н. дренажных, отверстий, соединённых с манометрами резиновыми или металлическими трубками (
Если скорость потока, обтекающего модель, так велика, что сказывается сжимаемость газа, то можно оптическими методами найти распределение плотности газа вблизи поверхности модели (см. ниже), а затем рассчитать поле давлений и получить распределение давлений по поверхности модели. Силы, касательные к поверхности модели, обычно определяют расчётом; в некоторых случаях для их измерения применяют специальные весы.
Измерение скорости газа, обтекающего модель. Скорость газа в аэродинамических трубах и при обтекании самолётов, ракет и летающих моделей в большинстве случаев измеряется трубками (насадками) Прандтля (см.
Если измеряемая скорость больше скорости звука, перед насадком возникает
Для измерения относительно малых скоростей в промышленной
Измерение плотности газа. Основные методы исследования поля плотностей газа можно разделить на 3 группы: основанные на зависимости коэффициента преломления света от плотности газа; на поглощении лучистой энергии газом и основанные на послесвечении молекул газа при электрическом разряде. Последние 2 группы методов применимы для исследования плотности газа при низких давлениях. Из методов 1-й группы применяются метод Тёплера («шлирен»-метод) и интерферометрический. В них для измерения плотности пользуются зависимостью между плотностью r газа и коэффициент преломления
При обтекании тела сжимаемой средой в областях, где имеются возмущения газа, вызванные обтекаемым телом, возникают поля с неоднородным распределением плотности (поля градиентов плотности). Отдельные участки поля с разной плотностью по-разному отклоняют проходящий через них луч света. Часть отклоненных лучей не пройдёт через фокус приёмника прибора Тёплера, т. к. его срезает непрозрачная пластина, т. н. нож Фуко
Количественные данные о плотности газа и величине изменения (градиенте) плотности можно получить, сравнивая при помощи микрофотометра изменение освещённости экрана, вызванное градиентом плотности в исследуемом течении, с изменением освещённости, вызванной эталонной стеклянной линзой
Метод исследования течений газа при помощи интерферометра также основан на зависимости между плотностью газа и коэффициентом преломления. Для этого обычно пользуются интерферометром Маха—Цендера. На полученной фотографии (
Одно из важных преимуществ оптических методов — возможность