для определения составляющей линейной скорости центра тяжести объекта вдоль заданного направления. Г. и. представляет собой гироскоп с тремя степенями свободы, центр тяжести которого смещен относительно точки подвеса. Вследствие этого Г. и. чувствителен к поступательным ускорениям объекта, т.к. возникающий при этом момент сил инерции вызывает прецессию гироскопа с угловой скоростью, пропорциональной указанному моменту, т. е. величине ускорения объекта. Тогда угол прецессии будет пропорционален линейной скорости объекта, что позволяет, измерив этот угол, найти искомую скорость.
Г. и. реагирует на кажущееся ускорение объекта, т. е. на разность между абсолютным ускорением объекта и гравитационным ускорением (ускорением силы тяготения). Вследствие этого показания прибора пропорциональны интегралу от кажущегося ускорения, т. е. кажущейся скорости. На рис. 2 приведена принципиальная схема Г. и. с трёхстепенным неуравновешенным (тяжёлым) гироскопом гиромаятникового типа. Ротор 1, установленный в гирокамере 2, статически неуравновешен относительно оси качания O'x' в наружном кардановом кольце (рамке) 3; относительно оси Oh (Оу) вращения рамки система полностью уравновешена. Для обеспечения перпендикулярности оси Oz гироскопа к оси Oh (Оу) служит система коррекции, состоящая из контактного приспособления 4 и управляемого им стабилизирующего двигателя 5.
Г. и. реагирует на составляющую w линейного ускорения объекта вдоль оси Oh. Показания Г. и. (величина линейной скорости объекта), пропорциональные углу a поворота рамки 3, снимаются с потенциометра 6. Если ось Oh (Оу), совпадающая с продольной осью объекта, горизонтальна, то из формулы для угловой скорости прецессии наружной рамки после интегрирования получается
где v0 — начальная скорость вдоль оси Oh, Н— кинетический момент гироскопа; т — масса ротора и гирокамеры; 1 — смещение вдоль оси Oz центра тяжести ротора и гирокамеры относительно точки подвеса; v — искомая составляющая скорости объекта вдоль оси Oh, которая и определяется по значению угла, снимаемого с потенциометра 6.
Если объект движется под углом к плоскости горизонта (в частности, вертикально), то для определения скорости v объекта из угла a следует вычесть тот угол, на который повернётся рамка под действием силы тяготения.
Г. и. линейных ускорений применяются главным образом в ракетной технике. Возможно применение Г. и. в гироинерциальной вертикали (см. Гировертикаль), где он заменяет акселерометр и интегратор.
А. Ю. Ишлинский, С. С. Ривкин.
Рис. 2. Принципиальная схема гироскопического интегратора линейных ускорений: 1 — ротор; 2 — гирокамера; 3 — наружное карданово кольцо (рамка); 4 — контактное приспособление; 5 — стабилизирующий двигатель; 6 — потенциометр; Oxhz — оси системы отсчёта; Oxyz — оси, связанные с гирокамерой.
Рис. 1. Схема поплавкового гироскопического интегратора: а — упрощенная принципиальная; б — кинематическая; 1 — ротор; 2 — рамка (поплавок); 3 — подшипники; 4 — корпус прибора; 5 — зазор между корпусом и поплавком; 6 — датчик угла; 7 — датчик моментов; Охуz — оси, связанные с рамкой (поплавком); Oxhz — оси системы отсчёта.
Гиростабилиза'тор, гироскопическое устройство, предназначенное для стабилизации отдельных объектов или приборов, а также для определения угловых отклонений объектов. По принципу действия Г. делятся на непосредственные, силовые и индикаторные.
Непосредственные Г. — устройства, в которых непосредственно используются стабилизирующие свойства трёхстепенного гироскопа. Применяются в качестве успокоителей бортовой качки корабля, стабилизаторов вагона однорельсовой ж. д. и др. (вес и габариты подобных Г. весьма существенны), а также для стабилизации чувствительных элементов систем управления. Например, Г. (рис. 1), состоящий из гирокамеры 1 с ротором, установленной в наружном кардановом кольце (раме) 2, осуществляет непосредственную стабилизацию антенны 3 и координатора 4. Координатор вырабатывает сигналы, пропорциональные углам отклонения оси антенны от заданного направления ОА. Эти сигналы через усилители- преобразователи 5 и 6 — поступают на датчики моментов 7 и 8 системы коррекции, осуществляющей автоматическое слежение оси антенны за указанным направлением. Подобные Г. называют гироскопическими следящими системами.
Силовые Г. (гирорамы) — электромеханические устройства, содержащие, кроме гироскопов, специальные двигатели для преодоления воздействия на стабилизируемый объект внешних возмущающих моментов. Применяются на кораблях, летательных аппаратах и др. объектах для стабилизации отдельных приборов и устройств. Кроме того, по принципу силовой гироскопической стабилизации работают некоторые типы гироскопов направления, гировертикалей и комбинированных устройств, называемых гироазимутгоризонтами. Силовые Г. в зависимости от числа гироскопов в раме могут быть одно- и двухгироскопными, а по числу осей стабилизации — одно-, двух- и трёхосными. У одноосного силового Г. с одним гироскопом (рис. 2) основным элементами являются гирокамера 1 с ротором; рама 2, играющая роль наружного карданова кольца и жестко связанная со стабилизируемым объектом; датчик угла 3, установленный на оси прецессии Ox; усилитель 4; стабилизирующий двигатель 5, предназначенный для приложения относительно оси стабилизации Oh моментов, компенсирующих действующие на раму внешние возмущающие моменты; маятник-корректор 6 и датчик моментов 7, являющиеся элементами системы коррекции Г. При действии внешнего возмущающего момента М, стремящегося повернуть раму вокруг оси Oh, гирокамера 1 по свойствам гироскопа начнёт прецессировать вокруг оси Ox; при этом возникает гироскопический момент Мг, противодействующий моменту М. В дальнейшем при повороте гирокамеры вокруг оси Ox на некоторый угол b датчик угла 3 через усилитель 4 включит стабилизирующий двигатель 5, прикладывающий относительно оси Oh момент стабилизации Мс, противоположный моменту М. В результате гирокамера начнёт прецессировать в обратном направлении и остановится (при постоянной величине М) в положении, для которого Мс + М = 0. Т. о., в силовом Г. гироскоп осуществляет стабилизацию лишь в первый момент; в дальнейшем её обеспечивает стабилизирующий двигатель, что позволяет стабилизировать значительные массы при сравнительно небольшом весе и габаритах самого гироскопа. На практике применяют также двухгироскопные Г., обладающие рядом преимуществ по сравнению с одногироскопными.
Сочетание двух одноосных Г. даёт двухосный Г., стабилизирующий платформу относительно плоскости горизонта; этот Г. может быть также использован в качестве гировертикали силового типа. Сочетание трёх одноосных Г. даёт трёхосный силовой гиростабилизатор (гироазимутгоризонт) — устройство, состоящее из гироскопа направления (гироазимута) и гировертикали (гирогоризонта). Он служит для измерения трёх углов, определяющих положение объекта, и применяется на кораблях и самолётах. Трёхосный Г. используется также для пространственной стабилизации некоторой платформы (гиростабилизированная платформа). Подобные Г. применяют в инерциальных навигационных системах.
Индикаторные Г. — системы автоматического регулирования, в которых гироскопические устройства, установленные на стабилизируемом объекте (например, платформе), являются чувствительными или