(а — большая полуось, I — наклон орбиты) и лучевую скорость g центра масс. Некоторое представление о характере лучевых скоростей в зависимости от формы и расположения орбиты даёт рис. 3 . Из примерно 2000 открытых спектрально-двойных звёзд орбиты вычислены для 500. Их периоды составляют от 4,7 часа до 60 лет.

  Если наклон орбиты близок к 90°, можно наблюдать периодические взаимные затмения компонентов. В зависимости от относительных размеров и яркостей компонентов общий блеск затменно-двойной звезды будет испытывать более или менее продолжительные и глубокие минимумы. По форме кривой блеска такой звезды (рис. 4 ) можно судить об элементах её орбиты. Самый короткий из известных периодов 4,7 часа, самый длинный — 57 лет. В 1911 русский астроном С. Н. Блажко разработал первый общий метод вычисления орбит затменно-двойных звёзд. Анализ кривых изменения блеска позволяет определить не только элементы орбиты затменно-двойной звезды, но и относительные размеры звёзд по сравнению с размерами орбиты, форму звёзд и их поверхностную яркость. В сочетании с результатами др. наблюдений Д. з. такой анализ даёт возможность определить многие звёздные характеристики. Так, если получена также кривая лучевых скоростей, то можно определить размеры орбиты и диаметры самих звёзд в км, а также и светимости звёзд. В некоторых (правда, редких) случаях можно изучать также строение и состав звёздных атмосфер, наличие расширяющихся и вращающихся оболочек, закон потери массы более массивной звездой и эволюцию системы.

  Применение 3-го закона Кеплера к Д.з., для которых известно расстояние, позволяет вычислить сумму масс компонентов, выраженную в единицах массы Солнца:

1 + 2 =a3 / p3 P2 ,

где p — параллакс звезды, а — большая полуось орбиты в секундах дуги, Р — период обращения. Если из наблюдений можно определить также отношение масс компонентов, тогда можно вычислить массу каждого компонента отдельно. Для спектрально-двойных звёзд можно определить лишь величину

(1 + 2 ) sin3 i .

  Если в спектре видны линии обоих компонентов, можно определить также отношение масс. Совокупность всех определений масс компонентов Д. з. позволила обнаружить важную для астрономии зависимость между массами и светимостями звёзд (см. «Масса — светимость» диаграмма ); она получила теоретическое обоснование и теперь широко используется для определения масс одиночных звёзд по их светимостям. Специальные (очень трудоёмкие и тонкие) исследования собственных движений некоторых звёзд показали наличие вокруг них одного или нескольких планетоподобных тел с массами порядка массы планеты Юпитер. Это дало первые надёжные доказательства существования др. планетных систем, кроме солнечной.

  Двойственность (и вообще кратность) — весьма распространённое явление среди звёзд Галактики. Весьма вероятно, что кратных систем больше, чем одиночных звёзд. По крайней мере, в галактических окрестностях Солнца (где, можно полагать, почти все звёзды нам известны) из 30 звёзд 17 одиночных и 13 кратных (29 компонентов). По своим физическим характеристикам и кинематике Д. з. не отличаются от одиночных звёзд и, по-видимому, имеют одинаковое с ними происхождение. Предложено несколько различных гипотез происхождения Д. з.: деление одиночных звёзд при нарушении устойчивости в результате быстрого осевого вращения; захват одной звезды другой; совместное образование в недрах одной туманности. Весьма вероятно, что кратные звёзды образуются в звёздных ассоциациях. Теория происхождения Д. з. должна также объяснить ряд замеченных статистических закономерностей в соотношениях между различными физическими характеристиками Д. з. и элементами их орбит. Специальный интерес представляют собой двойные, в состав которых входят переменные звёзды. Д. з., как и звёздные скопления , являются подходящими объектами для проверки современных представлений об эволюции звёзд.

  Лит.: Мартынов Д. Я., Курс общей астрофизики, М., 1965, гл. 3; Курс астрофизики и звёздной астрономии, под ред. А. А. Михайлова, т. 2, М., 1962, гл. 3—5; Струве О. и 3ебергс В., Астрономия 20 века, пер. с англ., М., 1968, гл. 14; Методы астрономии, под ред. В. Хилтнера, пер. с англ., М., 1967, гл. 22—24; Aitken R. G., Binary stars, 2ed., N.Y. — L., 1935.

  П. Г. Куликовский.

Рис. 3. Зависимость лучевых скоростей от формы и расположения орбиты спектрально-двойной звезды: е — эксцентриситет орбиты; w — долгота периастра.

Рис. 1 к ст. Двойные звёзды.

Рис. 2 к ст. Двойные звёзды.

Рис. 4. Кривая блеска затменно-двойной звезды и соответствующая ей система двух звёзд.

Двойные системы

Двойны'е систе'мы, бинарные системы, двухкомпонентные системы, физико-химические системы, состоящие из двух независимых составных частей (компонентов). Особое практическое значение имеют конденсированные Д. с., т. е. не содержащие газов или паров. Диаграммы состояния и диаграммы состав — свойство таких систем изображают на плоскости, откладывая на оси абсцисс состав х (выраженный в процентах по массе, атомных или мольных процентах одного из компонентов), а на оси ординат — температуры Т фазовых превращений (начала и конца кристаллизации, полиморфных превращений и др.) или численные значения измеримых свойств Д. с. (плотности, твёрдости, электропроводности и др.). Здесь рассмотрены лишь простейшие изобарические (при давлении 1 атм

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату