Большая Советская Энциклопедия (ИД)
Ида
И'да, Ипсилоритис, Псилоритис (греч. Íde, Ipseloreítes, Pseloreítes), горный массив в центральной части о. Крит. Сложен известняками. Высота 2456
Идальго Мигель
Ида'льго, Идальго-и-Костилья (Hidalgo у Costilla) Мигель (8.5.1753, Корралехо, штат Гуанахуато, — 30.7.1811, Чиуауа, штат Чиуауа), национальный герой Мексики, руководитель народного восстания 1810—11, переросшего в войну за независимость Мексики от Испании. Окончил духовную семинарию в Вальядолиде (ныне Морелия), где позднее был преподавателем, а затем ректором. Разжалованный в приходские священники за распространение идей французских энциклопедистов, И. продолжал выступать за независимость страны и улучшение экономического и правового положения индейского населения. 16 сентября 1810 в г. Долорес И. обратился к народу с призывом подняться на освободительную войну («Клич Долорес») и во главе революционной армии, состоявшей главным образом из крестьян-индейцев, рабочих рудников, пеонов, выступил против испанцев. В ноябре было создано в г. Гвадалахара правительство во главе с И. правительство провозгласило отмену рабства, опубликовало закон о возвращении индейцам общинных земель и о снижении налогов. В январе 1811 революционная армия потерпела поражение. В марте того же года И. был захвачен в плен, предан суду и расстрелян.
М. Идальго.
Идальго (рыцарство в средневековой Испании)
Ида'льго (исп. hidalgo), мелкое к среднее рыцарство в средневековой Испании. Термин «И.» (первоначально hijo d’algo — сын имеющего нечто) возник в конце 12 в. и окончательно укоренился для обозначения всех лиц рыцарского сословия в 13 и 14 вв. И. были важной военной силой в
Идальго (штат в Мексике)
Ида'льго (Hidalgo), штат в центральной части Мексики, на плато Центральная Меса. Площадь 21 тыс.
Идарское белогорье
Ида'рское белого'рье, горный хребет северного склона Восточного Саяна. Расположен в бассейне р. Кан. Высота до 1660
Идаятзаде Исмаил Гусейн оглы
Идаятзаде' Исмаил Гусейн оглы (19.8.1901, Баку, — 11.11.1951, там же), азербайджанский советский актёр, режиссёр, народный артист Азербайджанской ССР (1938). В 1917 начал сценическую, в 1934 режиссёрскую деятельность. Играл в Азербайджанском государственном театре (ныне им. М. Азизбекова, г. Баку). Роли: Абдул Али бек, Шариф, Саламов («Севиль»,«Алмас», «В 1905 году» Джабарлы), Гаджи Кара («Гаджи Кара» Ахундова), Шмага («Без вины виноватые» Островского), Швандя («Любовь Яровая» Тренева) и др. Среди постановок: «Сиявуш» Джавида (1934), «Шах-наме» Джанана (1936), «В 1905 году» (1937), «Невеста огня» (1939) Джабарлы, «Гачах Наби» Рустама (1940). С 1938 главный режиссёр Азербайджанского театра оперы и балета им. М. Ф. Ахундова постановщик, спектаклей: «Кёр-оглы» (1937), «Аршин мал алан» (1938) Гаджибекова, «Девичья башня» (1940), «Низами» (1948) Бадал-бейли, «Ануш» Тиграняна (1941), «Хосров и Ширин» Ниязи (1942), «Вэтэн» («Родина») Караева (1945), «Кармен» Бизе (1946) и др. Отмеченные неповторимым своеобразием сценические образы и монументальные, ярко театральные спектакли И. — значительный этап в развитии национального актёрского искусства и режиссуры. Депутат Верховного Совета Азербайджанской ССР 1-го созыва. Награжден 2 орденами.
Идеал (алгебраич. понятие)
Идеа'л (математический), одно из основных алгебраических понятий. Возникнув первоначально в связи с изучением алгебраических иррациональных чисел, И. нашли впоследствии многочисленные применения в других отделах математики.
Известно, что всякое целое (рациональное) число можно разложить в произведение простых множителей; например, 60 = 2 · 2 · 3 · 5, причём разложение единственно с точностью до порядка и знака множителей:
В 19 в. математики столкнулись с необходимостью разлагать на множители числа более общей природы. Если, например, рассматривать числа вида
где
причем ни один из множителей
дальше разложить в произведение чисел вида
нельзя. Нарушения привычных законов единственности разложения не будет, если свойство делимости связывать не с числами, а с И. В современной алгебре И. вводятся в произвольных
И. называются также идеальными числами. И. — это совокупность чисел, принадлежащих данному числовому кольцу (а в случае произвольного кольца — совокупность его элементов), обладающая следующими свойствами: 1) сумма и разность двух чисел (элементов) совокупности принадлежит этой совокупности; 2) произведение числа (элемента) из этой совокупности на любое другое число (на любой другой элемент) кольца также принадлежит этой совокупности. Затем рассматривают вместо чисел соответствующие им И.; так, например, числу 9 соответствует И.
Числовые понятия, связанные с делимостью чисел, переносятся на И.: один И. делится на другой, если любой элемент первого лежит также и во втором (для чисел это эквивалентно тому, что любое число первого И. делится хотя бы на одно число второго); произведение И. определяется как наименьший И., содержащий всевозможные попарные произведения элементов из обоих идеалов-множителей; наибольший общий делитель двух И. — наименьший И., содержащий элементы как первого, так и второго И., и др. В совокупности целых чисел любой И. состоит из кратных какого-либо фиксированного числа: любой И. является главным. В общем случае, уже для алгебраических иррациональных чисел, не всякий И. является главным. Делимость на главный И. эквивалентна делимости на соответствующее этому И. число. Благодаря наличию не главных И.