н/м2, сила тока не превышает несколько десятков ма; долговечность — десятки тыс. часов. Они имеют малые габариты и массу. Однако быстродействие таких приборов не превышает сотен мксек (рабочая частота — десятков кгц).
В приборах дугового разряда, главным образом с подогревным катодом, давление газа составляет десятые доли н/м2. Такие приборы (газотроны, тиратроны, клипперные приборы, таситроны и др.) имеют низкое внутреннее сопротивление (десятки ом), падение напряжения в них 10—20 в (в импульсном режиме — 100—200 в). Долговечность их ограничена постепенным разрушением катода и понижением давления (жестчением) наполняющего газа. Для увеличения долговечности приборов используют жидкий ртутный катод (ртутные вентили, игнитроны). Приборы с таким катодом способны пропускать ток силой до нескольких тыс. ампер и выдерживать обратное напряжение до сотен кв. Известны приборы дугового разряда с самоподогревающимся катодом — аркатроны.
В приборах искрового разряда при подаче между двумя металлическими холодными электродами напряжения, превышающего определённое значение (напряжение пробоя), возникает электрическая искра в виде ярко светящегося тонкого канала, обычно сложным образом изогнутого и разветвленного. Давление газа в них десятки или несколько сотен кн/м2. Часто применяются смеси инертных газов с кислородом, углекислым газом и т. п. Время формирования искрового разряда очень мало — доли нсек. Свойство разрядного промежутка почти мгновенно изменять свою электропроводность в значительных пределах (электрическое сопротивление промежутка изменяется от долей ома до сотен Мом) используется в искровых разрядниках — неуправляемых и управляемых (тригатронах).
В приборах коронного разряда (стабилитронах и др.) ионизация газа происходит в области наибольшей напряжённости поля (область коронирования) при необходимом условии — резкой неоднородности электрического поля между двумя электродами (например, при коаксиальной форме электродов). Давление газа в них — сотни н/м2 и выше. Зависимость силы тока от напряжения, приложенного к электродам, представляет собой прямую, почти параллельную оси токов.
Отдельную группу И. п. составляют: газоразрядные источники света, большинство из которых — приборы дугового разряда, работающие при высоком давлении газа (несколько сотен кн/м2); лампы высокой интенсивности излучения; эритемная лампа, дающая сильное ультрафиолетовое излучение; газовые лазеры (атомарные, ионные, молекулярные), являющиеся источниками когерентных электромагнитных колебаний светового диапазона волн, и т. д.
Известна также отдельная группа И. п. (аттенюаторы, фазовращатели, разрядники и др.), работа которых основана па взаимодействии сверхвысокочастотного поля и ионизированной области газа. О применении И. п. с различными видами разрядов см. в соответствующих статьях по конкретным классам И. п.
Лит.: Капцов Н. А., Электрические явления в газах и вакууме, 2 изд., М.—Л., 1950; Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960; Генис А. А., Горнштейн И. Л., Пугач А. В., Приборы тлеющего разряда, К., 1963; Черепанов В. П., Коневских В. М., Львов В. Н., Газоразрядные источники шумов, [М.], 1968; Нил Д. М., Конструирование аппаратуры на ионных приборах с холодным катодом, пер. с англ., М., 1968; Черепанов В. П., Григорьев О. П., Вакуумные и газоразрядные вентили, М., 1969.
Н. Г. Кашников.
Ио'нные ра'диусы, условные характеристики ионов, используемые для приблизительной оценки межъядерных расстояний в ионных кристаллах. Значения И. р. закономерно связаны с положением элементов в периодической системе Менделеева. И. р. широко используются в кристаллохимии, позволяя выявить закономерности строения кристаллов разных соединений, в геохимии при изучении явления замещения ионов в геохимических процессах и др.
Предложено несколько систем значений И. р. В основе этих систем обычно лежит следующее наблюдение: разность межъядерных расстояний А — Х и В — Х в ионных кристаллах состава АХ и ВХ, где А и В — металл, Х — неметалл, практически не меняется при замене Х на аналогичный ему другой неметалл (например, при замене хлора на бром), если координационные числа аналогичных ионов в сравниваемых солях одинаковы. Отсюда вытекает, что И. р. обладают свойством аддитивности, т. е. что экспериментально определяемые межъядерные расстояния можно рассматривать как сумму соответствующих «радиусов» ионов. Разделение этой суммы на слагаемые всегда базируется на более или менее произвольных допущениях. Системы И. р., предложенные разными авторами, отличаются главным образом использованием различных исходных допущений.
В таблицах приводят И. р., отвечающие разным значениям окислительного числа (см. Валентность). При значениях его, отличных от +1, окислительное число не соответствует реальной степени ионизации атомов, и И. р. приобретают ещё более условный смысл, так как связь может иметь в значительной мере ковалентный характер. Значения И. р. (в ) для некоторых элементов (по Н. В. Белову и Г. Б. Бокию): F— 1,33, Cl— 1,81, Br— 1,96, I— 2,20, O2— 1,36, Li+ 0,68, Na— 0,98, К + 1,33, Rb+ 1,49, Cs+ 1,65, Be2+ 0,34, Mg2+ 0,74, Ca2+ 1,04, Sr2+ 1,20, Ba2+ 1,38, Sc3+ 0,83, Y3+ 0,97, La3+ 1,04.
В. Л. Киреев.
Ио'нный исто'чник, устройство для получения направленных потоков (пучков) ионов. И. и. является важной частью ускорителей заряженных частиц, масс-спектрометров, ионных микроскопов, электромагнитных разделителей изотопов (см. Изотопов разделение) и многих др. устройств.
Ио'нный ла'зер, один из видов газового лазера.
Ио'нный микроско'п, прибор, в котором для получения изображений применяется пучок ионов, создаваемый термоионным или газоразрядным ионным источником. По принципу действия И. м. аналогичен электронному микроскопу. Проходя через объект и испытывая в различных его участках рассеяние и поглощение, ионный пучок фокусируется системой электростатических или магнитных линз и даёт на экране или фотослое увеличенное изображение объекта (см. Электронная и ионная оптика).
Создано лишь несколько опытных образцов И. м. Работы по его усовершенствованию стимулируются тем, что он должен обладать более высокой разрешающей способностью по сравнению с электронным микроскопом. Длина волны де Бройля для ионов значительно меньше, чем для электронов (при одинаковом ускоряющем напряжении), вследствие чего в И. м. очень малы эффекты дифракции, которые в электронном микроскопе ограничивают его разрешающую способность. Другие преимущества И. м. — меньшее влияние изменения