массы ионов при больших ускоряющих напряжениях и лучшая контрастность изображения. Расчёты показывают, что, например, контрастность изображения органических плёнок толщиной в 50 , вызванная рассеянием протонов, в несколько раз должна превышать контрастность, вызванную рассеянием электронов.
К недостаткам И. м. относятся заметная потеря энергии ионов даже при прохождении через очень тонкие объекты, что вызывает разрушение объектов, большая хроматическая аберрация (см.
Ионный насос
Ио'нный насо'с,
Ионный обмен
Ио'нный обме'н, обмен ионов в растворах электролитов (гомогенный И. о.). При смешении разбавленных растворов электролитов, например NaCl и KNO3 в смеси присутствуют ионы Na+, К+, NO3— и Cl—. Равновесное состояние выразится в этом случае уравнением: (реакция двойного обмена). Если одно из веществ, могущих получиться при взаимодействии, диссоциировано меньше других, равновесие сдвигается в сторону образования малодиссоциированного вещества. Равновесие сдвигается также в сторону образования летучего или малорастворимого продукта (если он выделяется из данной фазы) по реакциям:
При выпаривании равновесного раствора прежде всего начинается кристаллизация соли (комбинации ионов), обладающей меньшей растворимостью. Избирательность кристаллизации может быть вызвана также добавлением органических растворителей (спирт, ацетон, диоксан и т. п.).
При гетерогенном И. о. (ионообменная сорбция) обмен происходит между ионами, находящимися в растворе, и ионами, присутствующими на поверхности твёрдой фазы — ионита. При соприкосновении ионита, насыщенного одним ионом, например Н+, с раствором, содержащим другие ионы, например Na+ и Ca2+, происходит обмен ионов между раствором и ионитом: в растворе уменьшаются концентрации Na+ и Ca2+ и появляется эквивалентное количество ионов Н+.
Гетерогенный И. о. имеет место при сорбции из растворов электролитов на некоторых минералах (алюмосиликатах, гидратах окисей металлов,
Ионный проектор
Ио'нный прое'ктор, автоионный микроскоп, безлинзовый ионно-оптический прибор для получения увеличенного в несколько миллионов раз изображения поверхности твёрдого тела. С помощью И. п. можно различать детали поверхности, разделённые расстояниями порядка 2—3 , что даёт возможность наблюдать расположение отдельных атомов в кристаллической решётке. И. п. изобретён в 1951 немецким учёным Э. Мюллером, который ранее создал
Принципиальная схема И. и. показана на
Вероятность прямой ионизации газа в электрическом поле оказывается значительной, если на расстояниях порядка размеров атома (молекулы) газа создаётся падение потенциала порядка
Вблизи острия электрическое поле неоднородно — над ступеньками кристаллической решётки или отдельными выступающими атомами его локальная напряжённость увеличивается: на таких участках вероятность автоионизации выше и количество ионов, образующихся в единицу времени, больше. На экране эти участки отображаются в виде ярких точек. Иными словами, образование контрастного изображения поверхности определяется наличием у неё локального микрорельефа. Ионный ток и, следовательно, яркость и контрастность изображения растут с повышением давления газа, которое в И. п., однако, обычно не превышает примерно 0,001
Разрешающая способность И. п. зависит главным образом от касательных (относительно поверхности острия) составляющих тепловых скоростей ионов и от напряжённости ноля у острия. В отличие от электронного проектора, в И. п. влияние дифракции на разрешающую способность относительно мало вследствие значительно большей (по сравнению с электронами) массы ионов. Далее, разрешение И. п. существенно зависит от поляризуемости a атомов (или молекул) рабочего газа; наиболее пригодны для использования в И. п. газы с малой a (водород, гелий). Большинство частиц газа достигает поверхности острия, не претерпев ионизации. При обычных температурах они затем покидают её, обладая значительными касательными составляющими скорости. При охлаждении острия до температуры жидкого водорода или азота (20—78 К) неионизованные молекулы на некоторое время «прилипают» к нему, теряя свою кинетическую энергию. Их ионизация происходит после испарения с острия (для гелия на расстоянии » 5 от него; локальное распределение поля на таком удалении от поверхности достаточно хорошо выявляет атомную структуру острия, см.
И. п. широко применяется для исследования атомной структуры чистых металлов и различных сплавов и её связи с их механическими свойствами; всевозможных