отрицательные ионы, которые определяют многие свойства области D. Отрицательные ионы образуются в результате тройных столкновений электронов с нейтральными молекулами O2. Ниже 70—80 км концентрация молекул и число таких столкновений настолько возрастают, что отрицательных ионов становится больше, чем электронов. Уничтожаются отрицательные ионы при взаимной нейтрализации с положительными ионами. Так как этот процесс очень быстрый, то именно им объясняется довольно высокий эффективный коэффициент рекомбинации, который наблюдается в области D.

  При переходе ото дня к ночи в области D концентрация электронов ne резко уменьшается и соответственно уменьшается поглощение радиоволн, поэтому раньше считали, что ночью слой D исчезает. В момент солнечных вспышек на освещенной Солнцем земной поверхности сильно возрастает интенсивность рентгеновского излучения, увеличивающая ионизацию области D, что приводит к увеличению поглощения радиоволн, а иногда даже к полному прекращению радиосвязи, — так называемое внезапное ионосферное возмущение (Делинджера эффект). Продолжительность таких возмущений обычно 0,3—1,5 часа. Более длительные и более значительные поглощения бывают на высоких широтах (так называемые поглощения в полярной шапке — ППШ). Повышенная ионизация тут вызывается солнечными космическими лучами (в основном протонами с энергией в несколько Мэв), которые способны проникнуть в атмосферу только в районе геомагнитных полюсов (полярных шапок), т. е. там, где магнитные силовые линии не замкнуты. Длительность явлений ППШ достигает иногда нескольких дней.

  Область И. на высотах 100—200 км, включающая слои Е и F1, отличается наиболее регулярными изменениями. Это обусловлено тем, что именно здесь поглощается основная часть коротковолнового ионизующего излучения Солнца. Фотохимическая теория, уточняющая теорию простого слоя ионизации, хорошо объясняет все регулярные изменения ne и ионного состава в течение дня и в зависимости от уровня солнечной активности. Ночью из-за отсутствия источников ионизации в области 125—160 км величина ne сильно уменьшается, однако в области Е на высотах 100—120 км обычно сохраняется довольно высокая ne = (3—30) ×103 см-3. О природе источника ночной ионизации в области Е мнения расходятся.

  На высотах областей D и Е часто наблюдают кратковременные необычайно узкие слои повышенной ионизации (так называемые спорадические слои Es), состоящие в основном из ионов металлов Mg+, Fe+, Ca+ и др. За счёт Es возможно дальнее распространение телевизионных передач. Признанной теорией образования слоев Es является так называемая теория «ветрового сдвига», по которой в условиях магнитного поля движения газа в атмосфере «сгоняют» ионы к области нулевой скорости ветра, где и образуется слой Es.

  Концентрация ионов О+ становится больше 50% выше уровня 170—180 км днём и выше 215—230 км утром, вечером и ночью. Выше и ниже этого уровня условия образования И. совершенно различны. Так, днём в области максимума ионизации коротковолновым излучением Солнца, когда он расположен ниже этого уровня, образуется слой F1. Поэтому слой F1 регулярно наблюдается на ионограммах только при большой высоте Солнца над горизонтом, преимущественно летом и в основном при низкой активности Солнца, а в максимуме активности зимой он вообще не наблюдается. Выше указанного уровня создаются благоприятные условия для образования области F2.

  Поведение главного максимума ионизации, или области F, является очень сложным, оно коренным образом отличается от поведения областей Е и F1. Так, хотя в среднем электронная концентрация в слое F1 определяется солнечной активностью, но ото дня ко дню она сильно изменяется. Максимум ne в суточном ходе бывает сильно сдвинут относительно полудня, при этом сдвиг зависит от широты, сезона и даже долготы. Сезонной аномалией называется необычное увеличение ne зимой по сравнению с летним сезоном. В экваториальной области до полудня имеется один, а после полудня и ночью — два максимума ne, расположенных на геомагнитных широтах ± 15° (экваториальная или геомагнитная аномалия). В период восхода Солнца оба максимума начинают расходиться, перемещаясь в более высокие широты, и быстро исчезают, в то время как на экваторе образуется новый максимум. На высоких широтах также обнаружено необычное поведение области F и, в частности, образование узкой зоны пониженной ионизации, идущей параллельно зоне полярных сияний, где наблюдается повышенная ионизация. Всё это говорит о том, что, помимо солнечного излучения, изменения ne в области F определяются рядом геофизических факторов.

  Высота главного максимума И. (hmaxF) в средних широтах Северного полушария изменяется в течение суток сложным образом (рис. 4), глубоко спускаясь утром и достигая максимума вблизи полуночи. Высота слоя F зимой ниже (кривая I), чем летом (кривая II), а при высокой активности Солнца (кривая III) выше, чем при низкой (кривые I и II).

  В последнее время была развита новая теория образования области F, учитывающая действие амбиполярной диффузии, которая объяснила многие особенности области F и в том числе основную аномалию — образование максимума nе значительно выше максимума ионообразования, расположенного в области 150 км. Описанные выше вариации высоты слоя F она связывает с изменением в течение дня интенсивности ионизации и температуры атмосферы. Существование слоя F ночью объясняется притоком ионов сверху, из протоносферы, где они накапливаются в течение светлой части дня. Из-за различия механизма образования высота слоя ночью выше, чем днём.

  Многие особенности в изменении верхней части И., расположенной над максимумом области F, повторяют суточный ход и глобальное распределение nе в максимуме слоя. Это говорит о тесной связи этих областей И. Выше максимума области F уменьшение концентрации ионов с высотой происходит по барометрической формуле. При этом с увеличением высоты возрастает доля более лёгких ионов. Поэтому преобладание ионов O+ в области F сменяется днём выше 1000 км преобладанием ионов Н+ (протоносфера). Ночью в связи с понижением температуры протоносфера опускается до высот ~ 600 км. В верхней части И. по направлению к высоким широтам обнаружен рост доли тяжёлых ионов на данной высоте, что аналогичным образом связывается с наблюдаемым ростом температуры. Однако поведение И. в полярных областях пока полностью не объяснено.

  Движения потоков заряженных частиц в И. приводят к возникновению турбулентных неоднородностей электронной концентрации. Причины их возникновения — флуктуация ионизующего излучения и непрерывное вторжение в атмосферу метеоров, образующих ионизированные следы. Движение ионизованных масс и турбулентность И. влияют на распространение радиоволн, вызывая замирание.

  Изучение И. продолжает развиваться в двух направлениях — с точки зрения её влияния на распространение радиоволн и исследования физико- химических процессов, происходящих в ней, что привело к рождению новой науки — аэрономии. Современная теория позволила объяснить и распределение ионов с высотой, и эффективный коэффициент рекомбинации. Ставится задача построения единой глобальной динамической модели И. Осуществление такой задачи требует сочетания теоретических и лабораторных исследований с методами непосредственных измерений на ракетах и спутниках и систематических наблюдений И. на сети наземных станций.

  Лит.: Гинзбург В. Л., Распространение электромагнитных волн в плазме, М., 1960; Альперт Я. Л., Распространение

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату