, т. е.
.
Можно показать, что спектр его собственных значений непрерывен, а амплитуда вероятности есть де-бройлевская волна (
— собственный вектор оператора импульса
). Если задана энергия системы как функция координат и импульсов частиц,
достаточно для нахождения
, а также уровней энергии как собственных значений оператора полной энергии
.
. Эти коммутационные соотношения справедливы и при учёте спинов частиц; их оказывается достаточно для определения собственного значения квадрата полного момента:
, где квантовое число
,
Уравнения движения квантовомеханической системы могут быть записаны в двух формах: в виде уравнения для вектора состояния
(36)
— шрёдингеровская форма уравнения движения, и в виде уравнения для операторов (
(37)
— гейзенберговская форма уравнений движения, наиболее близкая классической механике. Из гейзенберговской формы уравнений движения, в частности, следует, что средние значения физических величин изменяются по законам классической механики; это положение называется теоремой Эренфеста.
Для логической структуры К. м. характерно присутствие двух совершенно разнородных по своей природе составляющих. Вектор состояния (волновая функция) однозначно определён в любой момент времени, если задан в начальный момент. В этой части теория вполне детерминистична. Но вектор состояния не есть наблюдаемая величина. О наблюдаемых на основе знания можно сделать лишь статистические (вероятностные) предсказания. Результаты индивидуального измерения над квантовым объектом в общем случае, строго говоря, непредсказуемы. Предпринимались попытки восстановить идею полного детерминизма в классическом смысле введением предположения о неполноте квантовомеханического описания. Например, высказывалась гипотеза о наличии у квантовых объектов дополнительных степеней свободы — «скрытых параметров», учёт которых сделал бы поведение системы полностью детерминированным в смысле классической механики; неопределённость возникает только вследствие того, что эти «скрытые параметры» неизвестны и не учитываются. Однако Дж.

Рис. 5 к ст. Квантовая механика.

Рис. 1 к ст. Квантовая механика.

Рис. 6 к ст. Квантовая механика.

Рис. 2 к ст. Квантовая механика.

Рис. 4 к ст. Квантовая механика.

Рис. 7 к ст. Квантовая механика.

Рис. 3 к ст. Квантовая механика.
Квантовая радиофизика
Ква'нтовая радиофи'зика, то же, что и
Квантовая статистика
Ква'нтовая стати'стика, раздел статистической физики, исследующий системы множества частиц, подчиняющихся законам
Квантовая теория поля
Ква'нтовая тео'рия по'ля.
Квантовая теория поля — квантовая теория систем с бесконечным числом степеней свободы (
I. Частицы и поля квантовой теории
1. Двойственность классической теории. В классической теории, формирование которой в основном завершилось к началу 20 в., физическая картина мира складывается из двух элементов — частиц и полей. Частицы — маленькие комочки материи, движущиеся по законам классической механики Ньютона. Каждая из них имеет 3 степени свободы: её положение задаётся тремя координатами, например
Указанное различие между полями и частицами является главным, хотя и не единственным: частицы дискретны, а поля непрерывны; электромагнитное поле (электромагнитные волны) может порождаться и поглощаться, в то время как материальным точкам классической механики возникновение и исчезновение чуждо; наконец, электромагнитные волны могут, накладываясь, усиливать или ослаблять и даже полностью «гасить» друг друга (
2. Кванты электромагнитного поля. В 1900 М.