Логаниевые
Лога'ниевые (Loganiaceae), семейство двудольных растений. Деревья и кустарники, иногда лианы или травы. Листья супротивные, простые, цельные. Цветки обоеполые, большей частью правильные; чашечка и венчик обычно пяти- или четырёхчленные. Гинецей из 2, редко 3 плодолистиков; завязь обычно верхняя, иногда полунижняя. Плод — коробочка или ягодовидный, реже — костянковидный. Около 20 родов (более 450 видов) в тропиках и субтропиках обоих полушарий; в СССР и Западной Европе дикорастущих Л. нет. Многие из Л. ядовиты, содержат алкалоиды; важное медицинское значение имеет
Логановский Александр Васильевич
Логано'вский Александр Васильевич [11(23).3.1810 (или 1812), Москва, — 18 (30).11.1855, там же], русский скульптор. Учился в петербургской АХ (1821—33) у В. И.
А. В. Логановский. «Парень, играющий в свайку». Гипс. 1836. Русский музей. Ленинград.
Логарифм
Логари'фм числа N по основанию а, показатель степени m, в которую следует возвести число а (основание Л.), чтобы получить N; обозначается logaN. Итак, m = logaN, если ам = N. Например, log10 100 = 2; log2 1/32 = - 5; loga 1 = 0, т. к. 100 = 102, 1/32 = 2-5, 1 = a0. При отрицательных а бесконечно много положительных чисел не имело бы действительных логарифмов, поэтому берётся а > 0 и а ¹ 1. Из свойств
loga(MN) = logaM + logaN;
logaM/N = logaM - logaN;
logaNk = k logaN;
logalogaN
позволяют сводить умножение и деление чисел к сложению и вычитанию их Л., а возведение в степень и извлечение корня — к умножению и делению Л. на показатель степени или корня, т. е. к более простым действиям.
Когда основание а фиксировано, говорят об определённой системе Л. В соответствии с десятичным характером нашего счёта наиболее употребительны десятичные Л. (а = 10), обозначаемые lg N. Для рациональных чисел, отличных от 10k с целым k, десятичные Л. суть
lnN = IgN/lge, lgN = InN/ln10;
1/lge = 2,30258; 1/ln10 = 0,43429....
Историческая справка. Открытие Л. было связано в первую очередь с быстрым развитием астрономии в 16 в., уточнением астрономических наблюдений и усложнением астрономических выкладок. Авторы первых таблиц Л. исходили из зависимости между свойствами геометрической прогрессии и составленной из показателей степени её членов арифметической прогрессии. Эти зависимости, частично подмеченные ещё
In (1+
Вскоре затем Дж.
ln.
Этот ряд очень быстро сходится, если М = N + 1 и N достаточно велико; поэтому он может быть использован для вычисления Л. В развитии теории Л. большое значение имели работы Л.
Термин «Л.» предложил Дж. Непер; он возник из сочетания греческих слов logos (здесь — отношение) и arithmos (число); в античной математике квадрат, куб и т. д. отношения а/b называются «двойным», «тройным» и т. д. отношением. Т. о., для Непера слова «lógu arithmós» означали «число (кратность) отношения», то есть Л. у Дж. Непера — вспомогательное число для измерения отношения двух чисел. Термин «натуральный логарифм» принадлежит Н. Меркатору, «характеристика» — английскому математику Г. Бригсу, «мантисса» в нашем смысле — Л. Эйлеру, «основание» Л. — ему же, понятие о модуле перехода ввёл Н. Меркатор. Современное определение Л. впервые дано английским математиком В. Гардинером (1742). Знак Л. — результат сокращения слова «Л.» — встречается в различных видах почти одновременно с появлением первых таблиц [напр., Log — у И.
Логарифмика
Логари'фмика, плоская кривая, являющаяся графиком
Логарифмирование
Логарифми'рование, действие, заключающееся в нахождении