натурального числа — к объёмам понятий и детально разработавшим логическую систему, средствами которой удавалось доказать все теоремы арифметики. Поскольку к тому времени в математике была практически завершена работа по сведению (в том же смысле, что и выше) основных понятий математического анализа, геометрии и алгебры к арифметике (посредством частичного сведения их друг к другу и выражения их понятий в терминах множеств теории), то, как считал Фреге, логицистическая программа была тем самым в основном выполнена.
Но ещё до выхода в свет 2-го тома работы Фреге «Основные законы арифметики» (1893—1903) Б. Рассел обнаружил в системе Фреге противоречие (называемое обычно парадоксом Рассела, см. Парадокс). Сам Рассел, однако, разделял основные тезисы программы Л.; он предпринял попытку «исправления» системы Фреге и «спасения» её от противоречий. Решение этой задачи потребовало большой работы по последовательной и детальной формализации не только математики, но и кладущейся в её основание (согласно программе Л.) логики. Итогом этой работы явился написанный Расселом (совместно с А. Н. Уайтхедом) трёхтомный труд «Principia Mathematica» (1910—13). Главным новшеством системы Рассела — Уайтхеда (ниже РМ) явилось построение логики в виде «ступенчатого исчисления», или «теории типов». Формальные объекты этой теории разделялись на т. н. типы (ступени), и эта «иерархия типов» (а в др. модификациях системы РМ — ещё дополнительная «иерархия уровней») позволила избавиться от всех известных парадоксов. Однако для построения классической математики средствами РМ к этой системе пришлось присоединить некоторые аксиомы (см. Типов теория) , содержательно характеризующие важные свойства данного конкретного «мира математики» (и, конечно, соответствующего ему мира реальных вещей), а вовсе не являющиеся «аналитическими истинами», или, по Лейбницу, истинами, верными «во всех возможных мирах». Итак, не вся расселовская математика выводима из логики. Но более того, эта математика и не есть вся математика: как показал К. Гёдель (1931), системы типа РМ (и все, не уступающие им по силе) существенно неполны — их средствами всегда можно сформулировать содержательно истинные, но не разрешимые (не доказуемые и не опровержимые) математические утверждения (см. Аксиоматический метод, Метаматематика).
Т. о., программа Л. «чисто логического» обоснования математики оказалась невыполнимой. Тем не менее и результаты Рассела, и работы др. учёных, предложивших позднее различные усовершенствования системы РМ (например, работы американского математика У. ван О. Куайна), оказали громадное положительное влияние на развитие математической логики и науки в целом, способствуя формированию и уточнению ряда важнейших логико-математических и общеметодологических идей и построению соответствующего точного математического аппарата.
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. 3; Френкель А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966, гл. 3.
Ю. А. Гастев.
Логи'ческая опера'ция в ЦВМ, поразрядная операция над кодами произвольной длины по правилам алгебры логики. Л. о. производится над всеми цифрами кодов одна и та же, при этом каждая цифра результата зависит не более чем от одной цифры одного или нескольких кодов. В ЦВМ Л. о. выполняются в большинстве случаев над двоичными кодами. К числу основных и наиболее распространённых Л. о. относятся операции отрицания, конъюнкции, дизъюнкции и эквивалентности (см. табл. при ст. Алгебра логики). Эти Л. о. достаточно просто реализуются физическими элементами ЦВМ, а более сложные Л. о. могут быть программно сведены, например, только к трём Л. о.: отрицания, конъюнкции и дизъюнкции. Примеры использования Л. о.: отрицание — инвертирование при преобразовании прямого кода в обратный или дополнительный код; конъюнкция — логическое умножение для «выделения» любых частей кода; дизъюнкция — логическое сложение при формировании новых команд из нескольких других команд; эквивалентность — равнозначность при определении поразрядного тождества кодов. К Л. о. часто относят также сдвиг, проверку равенства числа нулю, проверку знака числа, получение абсолютной величины числа и др. В универсальных ЦВМ Л. о. обеспечивают управление ходом выполнения программ и взаимосвязь в программах, формирование новых команд, перекодирование данных, поиск информации по логическим шкалам и др. Л. о. являются основой для создания специализированных логических цифровых машин, для решения задач анализа переключательных схем с целью их минимизации и задач синтеза, т. е. составления и подбора элементарных схем, посредством которых можно создавать более сложные схемы для реализаций заданных функций.
А. В. Гусев.
Логи'ческая сема'нтика, раздел логики, посвященный изучению значений и смыслов понятий и суждений и их формальных аналогов — интерпретаций выражений (термов и формул) различных исчислений (формальных систем). Т. о., к задачам Л. с. в первую очередь относится уточнение понятий «значение», «смысл», «интерпретация», а в связи с этим и понятий «истинность», «определимость», «выразимость», «следование», «модель» и др. (вплоть до столь общих и первичных понятий, как «множество», «предмет», «соответствие»). Важные семантические проблемы возникают в связи с различием между содержанием и объёмом понятий, между смыслом и (истинностным) значением суждений. Свойства (например, равносильность, следование), связанные с содержанием понятий и смыслом суждений, называются интенсиональными; свойства, связанные с объёмом понятий и истинностным значением суждений, называются экстенсиональными. Суждения и понятия, интенсионально равносильные, равносильны и экстенсионально; обратное, вообще говоря, неверно (например, высказывания «Волга впадает в Каспийское море» и «2×2 = 4» равносильны экстенсионально, но не интенсионально; любая пара равносильных в обычном понимании суждений иллюстрирует предыдущее утверждение; см. ниже об аналитической и синтетической истинности).
Основное для Л. с. отношение между выражением и его интерпретацией при более детальном анализе оказывается не двухместным, а трёхместным: понятие интерпретации «расслаивается» на экстенсиональный и интенсиональный уровни. Следуя традиции, идущей от автора первых фундаментальных работ по Л. с. Г. Фреге, австрийского логика Р. Карнапа и современного американского логика А. Чёрча, каждому собственному имени (в широком смысле включающем, например, количественные числительные и любые существительные с определёнными артиклями или указательными местоимениями) сопоставляют, с одной стороны, обозначаемый (называемый) им предмет (иначе, денотат, или номинат), а с другой — выражаемый этим именем смысл (или концепт). Члены этого «семантического треугольника» определяются в первую очередь для естественных языков и только затем уже, с некоторыми ограничениями, переносятся на формализованные языки. Отношения между именем, денотатом и концептом, вообще говоря, не однозначны; так, имена-омонимы имеют несколько различных концептов, а одному и тому же концепту могут соответствовать различные имена-синонимы; неоднозначно и т. н. отношение называния между именем и денотатом (пример, восходящий к Фреге: имена «Утренняя звезда» и «Вечерняя звезда», имеющие общий денотат — планету Венера, но разные концепты). Однако концепт полностью определяет денотат (если, конечно, таковой существует; например, имя «Пегас» имеет смысл, но не имеет денотата). В отличие от естественных языков, формализованные языки строятся, как правило, таким образом, чтобы каждое имя имело в точности один смысл; синонимия же, напротив, сохраняется и в большинстве