формализованных языков, причём синонимы, по определению, связываются отношением типа равенства (эквивалентности, тождества); устранение синонимии оказывается в ряде случаев принципиально невозможным ввиду отсутствия алгоритма установления тождества произвольных выражений («слов») в достаточно широком классе формализованных языков.

  Основы систематического построения современной Л. с. заложены в работах А. Тарского, уделявшего главное внимание анализу и возможностям точного определения понятий «истина», «выполнимость», «определимость», «обозначение» и т.п. Оказалось, что все эти понятия определяются для формализованных языков средствами более богатых языков, играющих для первых («объектных», или «предметных», языков) роль метаязыков. (Для определения соответствующих понятий для неформализованных языков их следует прежде всего формализовать, после чего придерживаться той же схемы.) Метаязык может быть, в свою очередь, формализован, и для определения его семантических понятий (истины и др.) приходится подниматься ещё на один метаязыковый уровень и т.д. Смешение же языка и метаязыка (на любом уровне) неминуемо приводит к семантическим парадоксам.

  Вслед за американским логиком У. ван О. Куайном различают свойства языковых выражений, характеризуемые в терминах произвольных интерпретаций (моделей) данного языка и инвариантные относительно перехода от одной интерпретации к другой, и языковые свойства, определяемые в терминах какой-либо одной интерпретации. Первый круг вопросов относят к теории смысла, второй — к теории референции (теории обозначения). Понятия смысла (концепта), синонимии, осмысленности, семантические следования относятся к теории смысла; эта область Л. с. находится по существу в самой начальной стадии развития. Теория референции, оперирующая понятиями истины (истинности), обозначения, именования и т.п., сравнительно богата результатами, из которых следует отметить теорему Тарского о неопределимости предиката истинности любой непротиворечивой языковой системы её собственными средствами. Значение теоремы Тарского, устанавливающей определённую ограниченность выразительных средств формальных языков, во многом аналогично роли знаменитой теоремы К. Гёделя [о принципиальной дедуктивной неполноте (см. Полнота в логике) достаточно богатых логико-математических исчислений] для метаматематики; сами конструкции доказательств обоих замечательных предложений обнаруживают глубокие аналогии, в совокупности же они дают весьма сильное орудие метаматематических доказательств (проблемы непротиворечивости, полноты и неполноты и др.).

  Следуя традиции, идущей ещё от Г. В. Лейбница, предложения какого-либо языка, истинные во всех его моделях («во всех возможных мирах»), принято называть аналитически истинными (соответственно предложения, не истинные ни в одной модели, — аналитически ложными), в отличие от синтетически (или фактически) истинных предложений, истинность которых, так сказать, зависит от свойств «данного мира» (иными словами, это предложения, не являющиеся ни аналитически истинными, ни аналитически ложными: они выполняются в некоторых, но не во всех моделях данного языка). Для полных языков понятие аналитической истинности, носящее семантический характер, удаётся описать в чисто синтаксических терминах — через доказуемость. Для языков же неполных (а именно таковы все языки, представляющие наибольший интерес для науки) подобного сведения Л. с. к синтаксису непосредственно провести не удаётся.

  Идея Лейбница о различении «возможных миров» и «действительного мира» как основы для построения Л. с. развивалась также голландским логиком Э. В. Бетом, английским логиком А. Н. Прайором, финским логиком Я. Хинтиккой и особенно американским логиком С. А. Крипке, который ввёл понятие модельной структуры; модельная структура — это совокупность множества всех моделей классической логики высказываний («все возможные миры»), конкретной модели из этого множества («действительный мир») и рефлексивного бинарного отношения на множестве моделей, связывающего общезначимость (тождественная истинность) произвольного предложения в одной модели с возможностью этого же предложения в другие модели. В зависимости от дополнительных свойств такого отношения (симметричность и транзитивность порознь и вместе) моделью «действительного мира» оказываются различные системы модальной логики. Современные исследования в области Л. с. привлекают также идеи и представления многозначной логики, аксиоматической теории множеств и абстрактной алгебры.

  Идеи, методы и результаты Л. с. находят применение в разнообразных областях прикладной лингвистики и семиотики (автоматическая дешифровка, машинный перевод, автоматическое реферирование), при построении теории семантической информации, в вопросах эвристического программирования (см. Эвристика), в исследовании проблем распознавания образов и др. кибернетических вопросов. См. также Семантика.

  Лит.: Карнап Р., Значение и необходимость, пер. с англ., М., 1959; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, введение; Финн В. К., О некоторых семантических понятиях для простых языков, в сборнике: Логическая структура научного знания, М., 1965, с. 52—74; Frege G., Über Sinn und Bedeutung, «Zeitschrilt für Philosophie und philosophische Kritik», 1892, Bd 100, S. 25—50; Tarsky A., Logic, semantics, metamathematics, Oxf., 1956; Quine W. V. 0., From a logical point of view, Camb. (Mass.), 1953; Kemeny J. G., A new approach to semantics, «Journal of Symbolic Logic», 1956, v. 21, № 1, p. 1—27, № 2, p. 149—61; Martin R. М., Truth and denotation, L., 1958; Rogers R., A survey of formal semantics, «Synthese», 1963, v. 15, № 1.

  Ю. А. Гастев, В. К. Финн.

Логические диаграммы

Логи'ческие диагра'ммы, графический (геометрический, точнее — топологический) аппарат математической логики. Идея Л. д. была известна ещё в средние века, развивалась затем Г. В. Лейбницем, но впервые достаточно подробно и обоснованно была изложена Л. Эйлером в «Письмах... к немецкой принцессе» (1768) — т. н. круги Эйлера. Отношения между классами (объёмами понятий) с тех пор принято изображать с помощью систем взаимно пересекающихся кругов (или любых других односвязных областей); объединению классов соответствует при этом объединение (теоретико-множественное, см. Множеств теория) изображающих их областей, пересечению — пересечение, дополнению (до универсального класса) — дополнение до некоторой «стандартной» объемлющей области (например, прямоугольника). Отношению включения между изображаемыми классами при этом соответствует одноимённое отношение между их изображениями (причём случаи, когда объемлющий класс совпадает с объемлемым и когда он существенно шире последнего, здесь не различаются). В дальнейшем идея Л. д. была развита и усовершенствована; особенно отчётливый вид она приобрела в работах Дж. Венна. (Оригинальный метод построения Л. д. был предложен также английским математиком Ч. Доджсоном, известным как детский писатель под псевдонимом Л. Кэрролл). Аппарат диаграмм Венна основан на центральной для алгебры логики идее разложения логических функций на «конституэнты»; он позволяет решать единообразным методом ряд задач логики высказываний и логики одноместных предикатов (см. Логика предикатов), обзор следствий из данных посылок, решение логических уравнений (при любом конечном числе переменных) и др., вплоть до простого и изящного решения разрешения проблемы. Аппарат Л. д. распространён и на классическое исчисление многоместных предикатов, а также оказывается весьма удобным средством для решения ряда задач из приложений математической логики к теории автоматов.

  Лит.: Кутюра Л.,: Алгебра логики, пер. с франц., Одесса, 1909; Кузич ев А. С., Диаграммы Венна. История и применения. М., 1968 (см. лит.); Venn J., Symbolic logic, 2 ed., L. — N. Y., 1894.

  Ю. А. Гастев.

Логические операции

Логи'ческие

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату